Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract Several maleimide derivatives of potential usefulness as conformational probes were tested for reactivity toward SH groups of Ca2+,Mg2+-ATPase of sarcoplasmic reticulum. These include three fluorescent labels, N-(1-anilinonaphthyl-4)male-imide (ANM), N-(p-(2-benzirnidazolyl)phenyl)maleimide (BIPM), and N-(7-dimethyl-amino-4-methyl-3-coumarinyl)maleimide (DACM), and a spin label, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl (MSL). These reagents also exhibit a selective reactivity toward SH groups which is similar to that of N-ethylmaleimide, although these conformational probes were somewhat more reactive than N-ethylmaleimide. Based on the above finding, procedures were devised to specifically label either one of two reactive SH groups of the ATPase, namely one highly reactive but functionally nonessential (SHN) and the other, essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609–617], with any one of these conformational probes. Sarcoplasmic reticulum membranes labeled with ANM at either SHN or SHD showed a characteristic fluorescence whose intensity reversibly changed in response to the removal and readdition of Ca2+ ions in the range of 10−6 to 10−7 M. The change could be ascribed to a conformational change of the ATPase in response to dissociation and association of Ca2+ ions at the transport site. The Ca2+-dependent fluorescence change was quantitatively different, depending on whether the ATPase was labeled at SHN or SHD. Moreover, it was probe-specific in that BIPM and DACM fluorescence did not change in response to Ca2+. The possible significance of these observations is discussed. This content is only available as a PDF. Author notes 1 This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, Itoh Science Foundation, The Naito Foundation, and Yamada Science Foundation. 2 Present address: Institute of Medical Science, The University of Tokyo, Takanawa, Minato-ku, Tokyo 108. © 1983, by the Japanese Biochemical Society
The Journal of Biochemistry – Oxford University Press
Published: Jul 1, 1983
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.