Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Eperon, V. Burlakov, P. Docampo, A. Goriely, H. Snaith (2014)
Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar CellsAdvanced Functional Materials, 24
P. Qin, Soichiro Tanaka, S. Ito, N. Tétreault, Kyohei Manabe, H. Nishino, M. Nazeeruddin, M. Grätzel (2014)
Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiencyNature Communications, 5
Yuze Lin, Yongfang Li, X. Zhan (2012)
Small molecule semiconductors for high-efficiency organic photovoltaics.Chemical Society reviews, 41 11
Shahzad Ahmad, E. Guillén, L. Kavan, M. Grätzel, M. Nazeeruddin (2013)
Metal free sensitizer and catalyst for dye sensitized solar cellsEnergy and Environmental Science, 6
Mulmudi Kumar, S. Dharani, Wei Leong, P. Boix, R. Prabhakar, T. Baikie, Chen Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. Mhaisalkar, N. Mathews (2014)
Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy ModulationAdvanced Materials, 26
Huan Wang, Xianwei Zeng, Zhanfeng Huang, Wenjun Zhang, Xianfeng Qiao, Bin Hu, X. Zou, Mingkui Wang, Yi-bing Cheng, Wei Chen (2014)
Boosting the photocurrent density of p-type solar cells based on organometal halide perovskite-sensitized mesoporous NiO photocathodes.ACS applied materials & interfaces, 6 15
U. Bach, D. Lupo, P. Comte, J. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel (1998)
Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficienciesNature, 395
S. Ito, Soichiro Tanaka, H. Vahlman, H. Nishino, Kyohei Manabe, P. Lund (2014)
Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects.Chemphyschem : a European journal of chemical physics and physical chemistry, 15 6
P. Kamat (2013)
Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics.The journal of physical chemistry letters, 4 6
M. Grätzel (2014)
The light and shade of perovskite solar cells.Nature materials, 13 9
N. Pellet, P. Gao, G. Gregori, Tae-Youl Yang, M. Nazeeruddin, J. Maier, M. Grätzel (2014)
Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angewandte Chemie, 53 12
J. Heo, S. Im, J. Noh, T. Mandal, Choong‐Sun Lim, J. Chang, Yong Lee, Hi-jung Kim, A. Sarkar, Md. Nazeeruddin, M. Grätzel, S. Seok (2013)
Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductorsNature Photonics, 7
Ze Yu, Fei Li, Licheng Sun (2015)
Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular componentsEnergy and Environmental Science, 8
J. Burschka, Amalie Dualeh, F. Kessler, E. Baranoff, Ngoc-Lê Cevey-Ha, C. Yi, M. Nazeeruddin, M. Grätzel (2011)
Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells.Journal of the American Chemical Society, 133 45
A. Abrusci, S. Stranks, P. Docampo, H. Yip, A. Jen, H. Snaith (2013)
High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers.Nano letters, 13 7
Junjie Wang, Shirong Wang, Xianggao Li, Lifeng Zhu, Q. Meng, Yin Xiao, Dongmei Li (2014)
Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells.Chemical communications, 50 44
Z. Gao, B. Mi, H. Tam, K. Cheah, C. H. Chen, M. Wong, S. T. Lee, C. S. Lee (2008)
High Efficiency and Small Roll‐Off Electrophosphorescence from a New Iridium Complex with Well‐Matched Energy LevelsAdvanced Materials, 20
Ming Cheng, Bo Xu, Cheng Chen, Xichuan Yang, Fuguo Zhang, Qin Tan, Yongbin Hua, L. Kloo, Licheng Sun (2015)
Phenoxazine‐Based Small Molecule Material for Efficient Perovskite Solar Cells and Bulk Heterojunction Organic Solar CellsAdvanced Energy Materials, 5
M. Green, A. Ho-baillie, H. Snaith (2014)
The emergence of perovskite solar cellsNature Photonics, 8
Dongqin Bi, S. Moon, Leif Häggman, G. Boschloo, Lei Yang, E. Johansson, M. Nazeeruddin, M. Grätzel, A. Hagfeldt (2013)
Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructuresRSC Advances, 3
M. Grätzel (2009)
Recent advances in sensitized mesoscopic solar cells.Accounts of chemical research, 42 11
C. Stoumpos, C. Malliakas, M. Kanatzidis (2013)
Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorganic chemistry, 52 15
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
Songtao Lv, Liying Han, Junyan Xiao, Lifeng Zhu, Jiangjian Shi, Huiyun Wei, Yuzhuan Xu, J. Dong, Xin Xu, Dongmei Li, Shirong Wang, Yanhong Luo, Q. Meng, Xianggao Li (2014)
Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives.Chemical communications, 50 52
P. Peumans, S. Forrest (2001)
Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cellsApplied Physics Letters, 79
Bo Xu, Esmaeil Sheibani, Peng Liu, Jinbao Zhang, H. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo, A. Hagfeldt, Licheng Sun (2014)
Carbazole‐Based Hole‐Transport Materials for Efficient Solid‐State Dye‐Sensitized Solar Cells and Perovskite Solar CellsAdvanced Materials, 26
P. Qin, S. Paek, M. Dar, N. Pellet, J. Ko, M. Grätzel, M. Nazeeruddin (2014)
Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material.Journal of the American Chemical Society, 136 24
P. Nagarjuna, K. Narayanaswamy, T. Swetha, G. Rao, S. Singh, G. Sharma (2015)
CH3NH3PbI3 Perovskite Sensitized Solar Cells Using a D-A Copolymer as Hole Transport MaterialElectrochimica Acta, 151
heterojunctions, Yu (2001)
Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions
N. Jeon, H. Lee, Young Kim, Jangwon Seo, J. Noh, Jaemin Lee, S. Seok (2014)
o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells.Journal of the American Chemical Society, 136 22
M. Grätzel (2001)
Photoelectrochemical cellsNature, 414
Jeffrey Christians, R. Fung, P. Kamat (2014)
An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.Journal of the American Chemical Society, 136 2
Simon Bretschneider, J. Weickert, J. Dorman, L. Schmidt‐Mende (2014)
Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applicationsAPL Materials, 2
Jun-Yuan Jeng, Kuo-Cheng Chen, T. Chiang, P. Lin, Tzung‐Da Tsai, Yun‐Chorng Chang, Tzung‐Fang Guo, Peter Chen, T. Wen, Y. Hsu (2014)
Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar CellsAdvanced Materials, 26
S. Mathew, A. Yella, P. Gao, R. Humphry‐Baker, B. Curchod, Negar Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. Nazeeruddin, M. Grätzel (2014)
Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers.Nature chemistry, 6 3
E. Edri, Saar Kirmayer, Michael Kulbak, G. Hodes, D. Cahen (2014)
Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells.The journal of physical chemistry letters, 5 3
Yunlong Guo, Chao Liu, Kento Inoue, Koji Harano, Hideyuki Tanaka, E. Nakamura (2014)
Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layerJournal of Materials Chemistry, 2
A. Esswein, D. Nocera (2007)
Hydrogen production by molecular photocatalysis.Chemical reviews, 107 10
Kwangseok Do, Hyeju Choi, Kimin Lim, Hyunjun Jo, J. Cho, M. Nazeeruddin, J. Ko (2014)
Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells.Chemical communications, 50 75
J. Zaumseil, H. Sirringhaus (2007)
Electron and ambipolar transport in organic field-effect transistors.Chemical reviews, 107 4
J. Ball, Michael Lee, Andrew Hey, H. Snaith (2013)
Low-temperature processed meso-superstructured to thin-film perovskite solar cellsEnergy and Environmental Science, 6
Ilan Gur, N. Fromer, Michael Geier, A. Alivisatos (2005)
Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from SolutionScience, 310
S. Habisreutinger, T. Leijtens, G. Eperon, S. Stranks, R. Nicholas, H. Snaith (2014)
Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes.The journal of physical chemistry letters, 5 23
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
D. Bhachu, D. Scanlon, Edward Saban, Hugo Bronstein, I. Parkin, C. Carmalt, R. Palgrave (2015)
Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour depositionJournal of Materials Chemistry, 3
David Lewis, P. O’Brien (2014)
Ambient pressure aerosol-assisted chemical vapour deposition of (CH₃NH₃)PbBr₃, an inorganic-organic perovskite important in photovoltaics.Chemical communications, 50 48
Lingling Zheng, Yao-Hsien Chung, Yingzhuang Ma, Lipei Zhang, Lixin Xiao, Zhijian Chen, Shufeng Wang, Bo Qu, Q. Gong (2014)
A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability.Chemical communications, 50 76
Waleed Laban, L. Etgar (2013)
Depleted hole conductor-free lead halide iodide heterojunction solar cellsEnergy and Environmental Science, 6
Yakun Song, Songtao Lv, Xicheng Liu, Xianggao Li, Shirong Wang, Huiyun Wei, Dongmei Li, Yin Xiao, Q. Meng (2014)
Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells.Chemical communications, 50 96
Y. Yamada, Toru Nakamura, Masaru Endo, A. Wakamiya, Y. Kanemitsu (2015)
Photoelectronic Responses in Solution-Processed Perovskite CH$_{\bf 3}$ NH$_{\bf 3}$PbI $_{\bf 3}$ Solar Cells Studied by Photoluminescence and Photoabsorption SpectroscopyIEEE Journal of Photovoltaics, 5
Xianfeng Gao, Jianyang Li, J. Baker, Yang Hou, Dongsheng Guan, Junhong Chen, C. Yuan (2014)
Enhanced photovoltaic performance of perovskite CH₃NH₃PbI₃ solar cells with freestanding TiO₂ nanotube array films.Chemical communications, 50 48
A. Mishra, P. Bäuerle (2012)
Small molecule organic semiconductors on the move: promises for future solar energy technology.Angewandte Chemie, 51 9
Dongqin Bi, Lei Yang, G. Boschloo, A. Hagfeldt, E. Johansson (2013)
Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells.The journal of physical chemistry letters, 4 9
Fuzhi Huang, Yasmina Dkhissi, Wenchao Huang, Manda Xiao, Iacopo Benesperi, S. Rubanov, Ye Zhu, Xiongfeng Lin, Liangcong Jiang, Yecheng Zhou, Angus Gray-Weale, J. Etheridge, C. McNeill, R. Caruso, U. Bach, L. Spiccia, Yi-bing Cheng (2014)
Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cellsNano Energy, 10
J. Xue, Barry Rand, S. Uchida, S. Forrest (2005)
A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic CellAdvanced Materials, 17
Manda Xiao, Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Ye Zhu, J. Etheridge, Angus Gray-Weale, U. Bach, Yi-bing Cheng, L. Spiccia (2014)
A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angewandte Chemie, 53 37
Jin‐Wook Lee, Sungmin Park, M. Ko, H. Son, N. Park (2014)
Enhancement of the photovoltaic performance of CH₃NH₃PbI₃ perovskite solar cells through a dichlorobenzene-functionalized hole-transporting material.Chemphyschem : a European journal of chemical physics and physical chemistry, 15 12
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
Hyeju Choi, Sojin Park, S. Paek, P. Ekanayake, M. Nazeeruddin, J. Ko (2014)
Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cellJournal of Materials Chemistry, 2
L. Etgar, P. Gao, Z. Xue, Qin Peng, A. Chandiran, B. Liu, Md. Nazeeruddin, M. Grätzel (2012)
Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 134 42
N. Jeon, Jaemin Lee, J. Noh, M. Nazeeruddin, M. Grätzel, S. Seok (2013)
Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials.Journal of the American Chemical Society, 135 51
Yixin Zhao, K. Zhu (2014)
Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.The journal of physical chemistry letters, 5 23
Y. Yamada, Toru Nakamura, Masaru Endo, A. Wakamiya, Y. Kanemitsu (2014)
Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications.Journal of the American Chemical Society, 136 33
Fuguo Zhang, Xichuan Yang, Haoxin Wang, Ming Cheng, Jianghua Zhao, Licheng Sun (2014)
Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode.ACS applied materials & interfaces, 6 18
Seungchan Ryu, J. Noh, N. Jeon, Young Kim, Woon Yang, Jangwon Seo, S. Seok (2014)
Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factorEnergy and Environmental Science, 7
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
A. Abate, M. Planells, Derek Hollman, Vishal Barthi, S. Chand, H. Snaith, N. Robertson (2015)
Hole-transport materials with greatly-differing redox potentials give efficient TiO2-[CH3NH3][PbX3] perovskite solar cells.Physical chemistry chemical physics : PCCP, 17 4
S. Ito, Soichiro Tanaka, Kyohei Manabe, H. Nishino (2014)
Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar CellsJournal of Physical Chemistry C, 118
T. Krishnamoorthy, Fu Kunwu, P. Boix, Hairong Li, T. Koh, Wei Leong, Satvasheel Powar, A. Grimsdale, M. Grätzel, N. Mathews, S. Mhaisalkar (2014)
A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cellsJournal of Materials Chemistry, 2
Dianyi Liu, T. Kelly (2013)
Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniquesNature Photonics, 8
Bing Cai, Y. Xing, Zhou Yang, Wen-Hau Zhang, J. Qiu (2013)
High performance hybrid solar cells sensitized by organolead halide perovskitesEnergy and Environmental Science, 6
Zonglong Zhu, Yang Bai, H. Lee, Cheng Mu, Teng Zhang, Lixia Zhang, Jiannong Wang, H. Yan, S. So, Shihe Yang (2014)
Polyfluorene Derivatives are High‐Performance Organic Hole‐Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar CellsAdvanced Functional Materials, 24
Hairong Li, Kunwu Fu, A. Hagfeldt, M. Grätzel, S. Mhaisalkar, A. Grimsdale (2014)
A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells.Angewandte Chemie, 53 16
A. Yella, Leo‐Philipp Heiniger, P. Gao, M. Nazeeruddin, M. Grätzel (2014)
Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency.Nano letters, 14 5
Molang Cai, V. Tiong, Tubuxin Hreid, J. Bell, Hongxia Wang (2015)
An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cellsJournal of Materials Chemistry, 3
Feng Hao, C. Stoumpos, D. Cao, R. Chang, M. Kanatzidis (2014)
Lead-free solid-state organic–inorganic halide perovskite solar cellsNature Photonics, 8
Kuo-Chin Wang, Jun-Yuan Jeng, Po-Shen Shen, Yu-Cheng Chang, E. Diau, Cheng-Hung Tsai, Tzu-Yang Chao, H. Hsu, P. Lin, Peter Chen, Tzung‐Fang Guo, T. Wen (2014)
p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar CellsScientific Reports, 4
P. Qin, H. Kast, M. Nazeeruddin, S. Zakeeruddin, A. Mishra, P. Bäuerle, M. Grätzel (2014)
Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cellsEnergy and Environmental Science, 7
Hak‐Beom Kim, Hyosung Choi, Jaeki Jeong, Seongbeom Kim, Bright Walker, Seyeong Song, Jin Kim (2014)
Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells.Nanoscale, 6 12
Feng Hao, C. Stoumpos, R. Chang, M. Kanatzidis (2014)
Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.Journal of the American Chemical Society, 136 22
L. Hammarström, S. Hammes‐Schiffer (2009)
Artificial photosynthesis and solar fuels.Accounts of chemical research, 42 12
Mulmudi Kumar, Natalia Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. Boix, N. Mathews (2013)
Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells.Chemical communications, 49 94
Dae-Yong Son, J. Im, Hui‐Seon Kim, N. Park (2014)
11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection SystemJournal of Physical Chemistry C, 118
Wei Chen, Yongzhen Wu, Jian Liu, Chuanjiang Qin, Xudong Yang, A. Islam, Yi-bing Cheng, Liyuan Han (2015)
Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cellsEnergy and Environmental Science, 8
Y. Kwon, Jongchul Lim, Hui‐jun Yun, Yun‐Hi Kim, T. Park (2014)
A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskiteEnergy and Environmental Science, 7
Anyi Mei, Xiong Li, Linfeng Liu, Zhiliang Ku, Tongfa Liu, Yaoguang Rong, Mi Xu, Minglei Hu, Jiangzhao Chen, Ying Yang, M. Grätzel, Hongwei Han (2014)
A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stabilityScience, 345
Chang‐Wen Chen, Hao-Wei Kang, S. Hsiao, Po-Fan Yang, Kai‐Ming Chiang, Hao‐Wu Lin (2014)
Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum DepositionAdvanced Materials, 26
B. O'Regan, M. Grätzel (1991)
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature, 353
J. Im, I. Jang, N. Pellet, M. Grätzel, N. Park (2014)
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.Nature nanotechnology, 9 11
Long Hu, Jun Peng, Weiwei Wang, Z. Xia, Jianyu Yuan, Jialin Lu, Xiaodong Huang, Wanli Ma, Huaibing Song, Wei Chen, Yi-bing Cheng, Jiang Tang (2014)
Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar CellsACS Photonics, 1
Jianhang Qiu, Yongcai Qiu, Keyou Yan, Min Zhong, Cheng Mu, H. Yan, Shihe Yang (2013)
All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays.Nanoscale, 5 8
S. Ameen, M. Akhtar, H. Seo, H. Shin (2014)
Photocurrent induced by conducting channels of hole transporting layer to adjacent photoactive perovskite sensitized TiO2 thin film: solar cell paradigm.Langmuir : the ACS journal of surfaces and colloids, 30 43
Hyeju Choi, S. Paek, Namwoo Lim, Yong Lee, M. Nazeeruddin, J. Ko (2014)
Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors.Chemistry, 20 35
S. Sung, M. Kang, In Choi, H. Kim, Hyoungjin Kim, M. Hong, Hwanuk Kim, W. Lee (2014)
14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials.Chemical communications, 50 91
Matthew Leyden, L. Ono, Sonia Raga, Y. Kato, Shenghao Wang, Y. Qi (2014)
High performance perovskite solar cells by hybrid chemical vapor depositionJournal of Materials Chemistry, 2
Qi Chen, Huanping Zhou, Z. Hong, Song Luo, Hsin‐Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, Yang Yang (2014)
Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 136 2
C. Kumar, Georgia Sfyri, D. Raptis, E. Stathatos, P. Lianos (2015)
Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting materialRSC Advances, 5
Yang Zhang, Wenqiang Liu, F. Tan, Yuzong Gu (2015)
The essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cellsJournal of Power Sources, 274
G. Eperon, S. Stranks, C. Menelaou, M. Johnston, L. Herz, H. Snaith (2014)
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy and Environmental Science, 7
N. Park (2013)
Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar CellJournal of Physical Chemistry Letters, 4
Hairong Li, Kunwu Fu, P. Boix, L. Wong, A. Hagfeldt, M. Grätzel, S. Mhaisalkar, A. Grimsdale (2014)
Hole-transporting small molecules based on thiophene cores for high efficiency perovskite solar cells.ChemSusChem, 7 12
A. Murphy, J. Fréchet (2007)
Organic semiconducting oligomers for use in thin film transistors.Chemical reviews, 107 4
Hui‐Seon Kim, Jin‐Wook Lee, Natalia Yantara, P. Boix, S. Kulkarni, S. Mhaisalkar, M. Grätzel, N. Park (2013)
High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.Nano letters, 13 6
E. Edri, Saar Kirmayer, D. Cahen, G. Hodes (2013)
High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.The journal of physical chemistry letters, 4 6
B. Conings, L. Baeten, C. Dobbelaere, J. D’Haen, J. Manca, H. Boyen (2014)
Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich ApproachAdvanced Materials, 26
H. Tian, Bo Xu, Hong Chen, E. Johansson, G. Boschloo (2014)
Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells.ChemSusChem, 7 8
Zonglong Zhu, Yang Bai, Teng Zhang, Zhike Liu, Xia Long, Zhanhua Wei, Zilong Wang, Lixia Zhang, Jiannong Wang, Feng Yan, Shihe Yang (2014)
High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells.Angewandte Chemie, 53 46
J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, U. Bach (2001)
High efficiency solid-state photovoltaic device due to inhibition of interface charge recombinationApplied Physics Letters, 79
N. Lewis, D. Nocera (2006)
Powering the planet: Chemical challenges in solar energy utilizationProceedings of the National Academy of Sciences, 103
Arianna Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Krol, T. Moehl, M. Grätzel, J. Moser (2014)
Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cellsNature Photonics, 8
Anurag Krishna, D. Sabba, Hairong Li, Jun Yin, P. Boix, C. Soci, S. Mhaisalkar, A. Grimsdale (2014)
Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cellsChemical Science, 5
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Dongqin Bi, G. Boschloo, Stefan Schwarzmüller, Lei Yang, E. Johansson, A. Hagfeldt (2013)
Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells.Nanoscale, 5 23
Huanping Zhou, Qi Chen, Gang Li, Song Luo, T. Song, Hsin‐Sheng Duan, Z. Hong, J. You, Yongsheng Liu, Yang Yang (2014)
Interface engineering of highly efficient perovskite solar cellsScience, 345
Jin‐Wook Lee, D. Seol, An-Na Cho, N. Park (2014)
High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3Advanced Materials, 26
Jun‐Ho Yum, Peter Chen, M. Grätzel, M. Nazeeruddin (2008)
Recent developments in solid-state dye-sensitized solar cells.ChemSusChem, 1 8-9
Jun-Yuan Jeng, Yi-Fang Chiang, Mu-Huan Lee, Shin-Rung Peng, Tzung‐Fang Guo, Peter Chen, T. Wen (2013)
CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar CellsAdvanced Materials, 25
N. Jeon, J. Noh, Woon Yang, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
Compositional engineering of perovskite materials for high-performance solar cellsNature, 517
Yanming Sun, Yunqi Liu, Daoben Zhu (2005)
Advances in organic field-effect transistorsJournal of Materials Chemistry, 15
J. Noh, S. Im, J. Heo, T. Mandal, S. Seok (2013)
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano letters, 13 4
F. Giacomo, S. Razza, F. Matteocci, A. D’Epifanio, S. Licoccia, T. Brown, A. Carlo (2014)
High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layerJournal of Power Sources, 251
Ze Yu, N. Vlachopoulos, M. Gorlov, L. Kloo (2011)
Liquid electrolytes for dye-sensitized solar cells.Dalton transactions, 40 40
M. Dar, F. Ramos, Z. Xue, B. Liu, Shahzad Ahmad, S. Shivashankar, M. Nazeeruddin, M. Grätzel (2014)
Photoanode Based on (001)-Oriented Anatase Nanoplatelets for Organic–Inorganic Lead Iodide Perovskite Solar CellChemistry of Materials, 26
C. Tang (1986)
Two‐layer organic photovoltaic cellApplied Physics Letters, 48
Sudam Chavhan, Ó. Miguel, Hans Grande, -. VictoriaGonzalez, Pedro, Rafael Sánchez, E. Barea, I. Mora‐Seró, -. RamónTena, Zaera (2014)
Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact
Jian Liu, Yongzhen Wu, Chuanjiang Qin, Xudong Yang, T. Yasuda, A. Islam, Kun Zhang, Wenqin Peng, Wei Chen, Liyuan Han (2014)
A dopant-free hole-transporting material for efficient and stable perovskite solar cellsEnergy and Environmental Science, 7
S. Pang, Hao Hu, Jiliang Zhang, S. Lv, Yaming Yu, Feng Wei, Tian-shi Qin, Hongxia Xu, Zhihong Liu, G. Cui (2014)
NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar CellsChemistry of Materials, 26
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
L. Etgar, P. Gao, P. Qin, M. Graetzel, M. Nazeeruddin (2014)
A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic responseJournal of Materials Chemistry, 2
T. Koh, Kunwu Fu, Yanan Fang, Shi Chen, T. Sum, N. Mathews, S. Mhaisalkar, P. Boix, T. Baikie (2014)
Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar CellsJournal of Physical Chemistry C, 118
N. Jeon, J. Noh, Young Kim, Woon Yang, Seungchan Ryu, S. Seok (2014)
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nature materials, 13 9
H. Snaith, L. Schmidt‐Mende (2007)
Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar CellsAdvanced Materials, 19
In less than three years, the photovoltaic community has witnessed a rapid emergence of a new class of solid‐state heterojunction solar cells based on solution‐processable organometal halide perovskite absorbers. The energy conversion efficiency of solid‐state perovskite solar cells (PSCs) has been quickly increased to a certified value of 20.1% by the end of 2014 because of their unique characteristics, such as a broad spectral absorption range, large absorption coefficient, high charge carrier mobility and diffusion length. Here, the focus is specifically on recent developments of hole‐transporting materials (HTMs) in PSCs, which are essential components for achieving high solar cell efficiencies. Some fundamentals with regard to PSCs are first presented, including the history of PSCs, device architectures and general operational principles of PSCs as well as various techniques developed for the fabrications of uniform and dense perovskite complexes. A broad range of the state‐of‐the‐art HTMs being used in PSCs are then discussed in detail. Finally, an outlook on the design of more efficient HTMs for highly efficient PSCs is addressed.
Advanced Energy Materials – Wiley
Published: Jun 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.