Style-based inverse kinematics
Grochow, Keith; Martin, Steven L.; Hertzmann, Aaron; Popović, Zoran
2004-08-08 00:00:00
Style-Based Inverse Kinematics Keith Grochow1 Steven L. Martin1 1 University Aaron Hertzmann2 2 University Zoran Popovi 1 c of Washington of Toronto Abstract This paper presents an inverse kinematics system based on a learned model of human poses. Given a set of constraints, our system can produce the most likely pose satisfying those constraints, in realtime. Training the model on different input data leads to different styles of IK. The model is represented as a probability distribution over the space of all possible poses. This means that our IK system can generate any pose, but prefers poses that are most similar to the space of poses in the training data. We represent the probability with a novel model called a Scaled Gaussian Process Latent Variable Model. The parameters of the model are all learned automatically; no manual tuning is required for the learning component of the system. We additionally describe a novel procedure for interpolating between styles. Our style-based IK can replace conventional IK, wherever it is used in computer animation and computer vision. We demonstrate our system in the context of a number of applications: interactive character posing, trajectory keyframing, real-time motion capture with missing markers, and
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/association-for-computing-machinery/style-based-inverse-kinematics-4aAvNIFdUA
Style-Based Inverse Kinematics Keith Grochow1 Steven L. Martin1 1 University Aaron Hertzmann2 2 University Zoran Popovi 1 c of Washington of Toronto Abstract This paper presents an inverse kinematics system based on a learned model of human poses. Given a set of constraints, our system can produce the most likely pose satisfying those constraints, in realtime. Training the model on different input data leads to different styles of IK. The model is represented as a probability distribution over the space of all possible poses. This means that our IK system can generate any pose, but prefers poses that are most similar to the space of poses in the training data. We represent the probability with a novel model called a Scaled Gaussian Process Latent Variable Model. The parameters of the model are all learned automatically; no manual tuning is required for the learning component of the system. We additionally describe a novel procedure for interpolating between styles. Our style-based IK can replace conventional IK, wherever it is used in computer animation and computer vision. We demonstrate our system in the context of a number of applications: interactive character posing, trajectory keyframing, real-time motion capture with missing markers, and
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.