Access the full text.
Sign up today, get DeepDyve free for 14 days.
Daniel Peterson, R. DiPaolo, Osami Kanagawa, Emil Unanue (1999)
Cutting edge: negative selection of immature thymocytes by a few peptide-MHC complexes: differential sensitivity of immature and mature T cells.Journal of immunology, 162 6
S. Takeda, H. Rodewald, H. Arakawa, H. Bluethmann, Takeyuki Shimizu (1996)
MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span.Immunity, 5 3
Y. Shinkai, 0Gary Rathbun, K. Lam, E. Oltz, V. Stewart, Monica Mendelsohn, J. Charron, M. Datta, F. Young, A. Stall, F. Alt (1992)
RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangementCell, 68
G. Pestano, Yaling Zhou, L. Trimble, J. Daley, G. Weber, H. Cantor (1999)
Inactivation of misselected CD8 T cells by CD8 gene methylation and cell death.Science, 284 5417
Lesley Smyth, Owen Williams, Russell Huby, T. Norton, Oreste Acuto, Steven Ley, Dimitris Kioussis (1998)
Altered peptide ligands induce quantitatively but not qualitatively different intracellular signals in primary thymocytes.Proceedings of the National Academy of Sciences of the United States of America, 95 14
K. Yasutomo, B. Lucas, R. Germain (2000)
TCR Signaling for Initiation and Completion of Thymocyte Positive Selection Has Distinct Requirements for Ligand Quality and Presenting Cell TypeThe Journal of Immunology, 165
Corinne Tanchot, B. Rocha (1997)
Peripheral Selection of T Cell Repertoires: The Role of Continuous Thymus OutputThe Journal of Experimental Medicine, 186
J. Bender, T. Mitchell, J. Kappler, P. Marrack (1999)
Cd4+ T Cell Division in Irradiated Mice Requires Peptides Distinct from Those Responsible for Thymic SelectionThe Journal of Experimental Medicine, 190
J. Riberdy, E. Mostaghel, C. Doyle (1998)
Disruption of the CD4-major histocompatibility complex class II interaction blocks the development of CD4(+) T cells in vivo.Proceedings of the National Academy of Sciences of the United States of America, 95 8
I. Štefanov́a, M. Corcoran, E. Horak, L. Wahl, J. Bolen, I. Horak (1993)
Lipopolysaccharide induces activation of CD14-associated protein tyrosine kinase p53/56lyn.The Journal of biological chemistry, 268 28
Ronald Rooke, C. Waltzinger, C. Benoist, Diane Mathis (1997)
Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses.Immunity, 7 1
H. Ljunggren, L. Kaer, P. Ashton‐Rickardt, S. Tonegawa, H. Ploegh (1995)
Differential reactivity of residual CD8+ T lymphocytes in TAP1 and β2‐microglobulin mutant miceEuropean Journal of Immunology, 25
Ulrich Beutner, H. Macdonald (1998)
TCR-MHC class II interaction is required for peripheral expansion of CD4 cells in a T cell-deficient host.International immunology, 10 3
Z. Grossman, William Paul (1992)
Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses.Proceedings of the National Academy of Sciences of the United States of America, 89 21
E. Shores, T. Tran, A. Grinberg, C. Sommers, H. Shen, P. Love (1997)
Role of the Multiple T Cell Receptor (TCR)-ζ Chain Signaling Motifs in Selection of the T Cell RepertoireThe Journal of Experimental Medicine, 185
C. Viret, F. Wong, Charles Janeway (1999)
Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition.Immunity, 10 5
S. Schmitt, K. Müller, B. Kyewski (1997)
Two separable T cell receptor signals reconstitute positive selection of CD4 lineage T cells in vivoEuropean Journal of Immunology, 27
Li-yun Huang, R. Germain (1992)
MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8Nature, 356
T. Brocker (1997)
Survival of Mature CD4 T Lymphocytes Is Dependent on Major Histocompatibility Complex Class II–expressing Dendritic CellsThe Journal of Experimental Medicine, 186
T. Nakayama, A. Singer, E. Hsi, L. Samelson (1989)
Intrathymic signalling in immature CD4+ CD8+ thymocytes results in tyrosine phosphorylation of the T-cell receptor zeta chainNature, 341
L. Kaer, P. Ashton‐Rickardt, H. Ploegh, S. Tonegawa (1992)
TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4−8+ T cellsCell, 71
P. Kisielow, A. Miazek (1995)
Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptorThe Journal of Experimental Medicine, 181
Joaquín Madrenas, R. Wange, Jennifer Wang, Noah Isakov, L. Samelson, Ronald Germain (1995)
Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonistsScience, 267
Sally Clarke, A. Rudensky (2000)
Survival and Homeostatic Proliferation of Naive Peripheral CD4+ T Cells in the Absence of Self Peptide:MHC Complexes1The Journal of Immunology, 165
R. Wilkinson, Graham Anderson, J. Owen, E. Jenkinson (1995)
Positive selection of thymocytes involves sustained interactions with the thymic microenvironment.Journal of immunology, 155 11
EA Mostaghel, JM Riberdy, DA Steeber, C Doyle (1998)
Coreceptor-independent T cell activation in mice expressing MHC class II molecules mutated in the CD4 binding domainJ. Immunol., 161
D. Witherden, N. Oers, N. Oers, C. Waltzinger, A. Weiss, C. Benoist, D. Mathis (2000)
Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules.The Journal of experimental medicine, 191 2
B. Lucas, I. Štefanov́a, K. Yasutomo, N. Dautigny, R. Germain (1999)
Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire.Immunity, 10 3
Bettina Ernst, Dong-sup Lee, Jennifer Chang, J. Sprent, C. Surh (1999)
The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery.Immunity, 11 2
P. Muranski, B. Chmielowski, L. Ignatowicz (2000)
Mature CD4+ T Cells Perceive a Positively Selecting Class II MHC/Peptide Complex in the Periphery1The Journal of Immunology, 164
K. Murali-Krishna, L. Lau, S. Sambhara, F. Lemonnier, J. Altman, R. Ahmed (1999)
Persistence of memory CD8 T cells in MHC class I-deficient mice.Science, 286 5443
E. Petricoin, S. Ito, B. Williams, S. Audet, L. Stancato, A. Gamero, K. Clouse, P. Grimley, A. Weiss, J. Beeler, D. Finbloom, E. Shores, R. Abraham, A. Larner (1997)
Antiproliferative action of interferon-α requires components of T-cell-receptor signallingNature, 390
C. Mackall, F. Hakim, R. Gress (1997)
Restoration of T-cell homeostasis after T-cell depletion.Seminars in immunology, 9 6
E. Robey, B. Fowlkes (1994)
Selective events in T cell development.Annual review of immunology, 12
(1993)
regulation of TCR-associated protein tyrosine kinase activity by TCR ζ
W. Kieper, S. Jameson (1999)
Homeostatic expansion and phenotypic conversion of naïve T cells in response to self peptide/MHC ligands.Proceedings of the National Academy of Sciences of the United States of America, 96 23
L. Ardouin, C. Boyer, A. Gillet, J. Trucy, A. Bernard, J. Nunès, J. Delon, A. Trautmann, Hai-Tao He, B. Malissen, M. Malissen (1999)
Crippling of CD3-ζ ITAMs Does Not Impair T Cell Receptor SignalingImmunity, 10
H. Pircher, K. Bürki, R. Lang, H. Hengartner, R. Zinkernagel (1989)
Tolerance induction in double specific T-cell receptor transgenic mice varies with antigenNature, 342
M. Zijlstra, M. Bix, N. Simister, J. Loring, D. Raulet, R. Jaenisch (1990)
β2-Microglobulin deficient mice lack CD4−8+ cytolytic T cellsNature, 344
R. Seder, W. Paul, M. Davis, B. Fazekas, S. Groth (1992)
The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic miceThe Journal of Experimental Medicine, 176
In-Hong Lee, W. Li, K. Hisert, L. Ivashkiv (1999)
Inhibition of Interleukin 2 Signaling and Signal Transducer and Activator of Transcription (Stat)5 Activation during T Cell Receptor–Mediated Feedback Inhibition of T Cell ExpansionThe Journal of Experimental Medicine, 190
(2013)
References Subscriptions Permissions Email Alerts Coreceptor-Independent T Cell Activation in Mice Expressing MHC Class II Molecules Mutated in the CD4 Binding Domain
F. Mary, C. Moon, T. Venaille, M. Thomas, D. Mary, Alain Bernard (1999)
Modulation of TCR signaling by β1 integrins: role of the tyrosine phosphatase SHP‐1European Journal of Immunology, 29
A. Goldrath, M. Bevan (1999)
Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts.Immunity, 11 2
B. Rocha, H. Boehmer (1991)
Peripheral selection of the T cell repertoire.Science, 251 4998
J. Kirberg, A. Berns, H. Boehmer (1997)
Peripheral T Cell Survival Requires Continual Ligation of the T Cell Receptor to Major Histocompatibility Complex–Encoded MoleculesThe Journal of Experimental Medicine, 186
A. Saparov, L. Kraus, Y. Cong, J. Marwill, X. Xu, C. Elson, C. Weaver (1999)
Memory/effector T cells in TCR transgenic mice develop via recognition of enteric antigens by a second, endogenous TCR.International immunology, 11 8
H. Pircher, U. Rohrer, D. Moskophidis, R. Zinkernagel, H. Hengartner (1991)
Lower receptor avidity required for thymic clonal deletion than for effector T-cell functionNature, 351
N. Oers, Nigel Killeen, Arthur Welss (1994)
ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR zeta in murine thymocytes and lymph node T cells.Immunity, 1 8
N. Oers, W. Tao, J. Watts, P. Johnson, R. Aebersold, H. Teh (1993)
Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) zeta subunit: regulation of TCR-associated protein tyrosine kinase activity by TCR zetaMolecular and Cellular Biology, 13
(1999)
a pitfall for T cell memory studies? Eur
S. Oehen, K. Brduscha‐Riem (1999)
Naïve cytotoxic T lymphocytes spontaneously acquire effector function in lymphocytopenic recipients: A pitfall for T cell memory studies?European Journal of Immunology, 29
W. Martin, G. Hicks, S. Mendiratta, Hitesh Leva, H. Ruley, L. Kaer (1996)
H2-M Mutant Mice Are Defective in the Peptide Loading of Class II Molecules, Antigen Presentation, and T Cell Repertoire SelectionCell, 84
P. Marrack, J. Bender, David Hildeman, M. Jordan, T. Mitchell, M. Murakami, A. Sakamoto, B. Schaefer, B. Swanson, J. Kappler (2000)
Homeostasis of αβ TCR+ T cellsNature Immunology, 1
T. Miyazaki, P. Wolf, S. Tourne, C. Waltzinger, A. Dierich, N. Barois, H. Ploegh, C. Benoist, D. Mathis (1996)
Mice Lacking H2-M Complexes, Enigmatic Elements of the MHC Class II Peptide-Loading PathwayCell, 84
A. Burkhardt, B. Stealey, R. Rowley, S. Mahajan, M. Prendergast, J. Fargnoli, J. Bolen (1994)
Temporal regulation of non-transmembrane protein tyrosine kinase enzyme activity following T cell antigen receptor engagement.The Journal of biological chemistry, 269 38
R. Germain, I. Štefanov́a (1999)
The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation.Annual review of immunology, 17
J. Tan, C. Surh (2006)
T cell memory.Current topics in microbiology and immunology, 311
H. Ljunggren, Richard Glas, J. Sandberg, K. Kärre (1996)
Reactivity and Specificity of CD8+ T Cells in Mice with Defects in the MHC Class I Antigen‐Presenting PathwayImmunological Reviews, 151
M. Markiewicz, C. Girão, J. Opferman, Jiling Sun, Qinghui Hu, Alexander Agulnik, C. Bishop, C. Thompson, P. Ashton‐Rickardt (1998)
Long-term T cell memory requires the surface expression of self-peptide/major histocompatibility complex molecules.Proceedings of the National Academy of Sciences of the United States of America, 95 6
P. Kisielow, H. Blüthmann, U. Staerz, M. Steinmetz, H. Boehmer (1988)
Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytesNature, 333
J. Sloan-Lancaster, A. Shaw, J. Rothbard, P. Allen (1994)
Partial T cell signaling: Altered phospho-ζ and lack of zap70 recruitment in APL-induced T cell anergyCell, 79
D. Cosgrove, D. Gray, A. Dierich, J. Kaufman, M. Lemeur, C. Benoist, D. Mathis (1991)
Mice lacking MHC class II moleculesCell, 66
E. Kersh, G. Kersh, P. Allen (1999)
Partially Phosphorylated T Cell Receptor ζ Molecules Can Inhibit T Cell ActivationThe Journal of Experimental Medicine, 190
J. Kaye, M. Hsu, M. Sauron, S. Jameson, N. Gascoigne, S. Hedrick (1989)
Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptorNature, 341
Corinne Tanchot, F. Lemonnier, B. Pérarnau, A. Freitas, B. Rocha (1997)
Differential requirements for survival and proliferation of CD8 naïve or memory T cells.Science, 276 5321
G. Davey, S. Schober, B. Endrizzi, Angela Dutcher, S. Jameson, K. Hogquist (1998)
Preselection Thymocytes Are More Sensitive to T Cell Receptor Stimulation Than Mature T CellsThe Journal of Experimental Medicine, 188
T cell receptor (TCR) signaling triggered by recognition of self-major histocompatibility complex (MHC) ligands has been proposed to maintain the viability of naïve T cells and to provoke their proliferation in T cell–deficient hosts. Consistent with this, the partially phosphorylated state of TCRζ chains in naïve CD4+ and CD8+ T cells in vivo was found to be actively maintained by TCR interactions with specific peptide-containing MHC molecules. TCR ligand-dependent phosphorylation of TCRζ was lost within one day of cell transfer into MHC-deficient hosts, yet the survival of transferred CD4+ lymphocytes was the same in recipients with or without MHC class II expression for one month. Thus, despite clear evidence for TCR signaling in nonactivated naïve T cells, these data argue against the concept that such signaling plays a predominant role in determining lymphocyte lifespan.
Nature Immunology – Springer Journals
Published: Oct 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.