Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Spaia, Ifigenia Magoula, G. Tsapas, George Vayonas (2000)
Effect of Pyrazinamide and Probenecid on Peritoneal Urate Transport Kinetics during Continuous Ambulatory Peritoneal DialysisPeritoneal Dialysis International, 20
A. Imholz, G. Koomen, Wim Voorn, D. Struijk, Lambertus Arisz, R. Krediet (1998)
Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD.Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 13 1
Sampling of peritoneal interstitial fluid and measurements of colloid osmotic pressures after peritoneal dialysis in rats
M. Nakayama, K. Yokoyama, H. Kubo, H. Matsumoto, T. Hasegawa, T. Shigematsu, Y. Kawaguchi, O. Sakai (1996)
The effect of ultra-low sodium dialysate in CAPD. A kinetic and clinical analysis.Clinical nephrology, 45 3
Michael Flessner (1991)
Peritoneal transport physiology: insights from basic research.Journal of the American Society of Nephrology : JASN, 2 2
A. Parker, K. Nolph (1980)
Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis.Transactions - American Society for Artificial Internal Organs, 26
O. Heimbürger, J. Waniewski, A. Werynski, B. Lindholm (1992)
A quantitative description of solute and fluid transport during peritoneal dialysis.Kidney international, 41 5
T. Weinreich, A. Colombi, H.H. Echterhoff, G. Mielke, M. Nebel, C. Ziegelmayer, J. Passlick–Deetjen (1993)
Transperitoneal Calcium Mass Transfer using Dialv Sate with a Low Calcium Concentration (1.0 mM)Peritoneal Dialysis International, 13
Leo Martis, K. Serkes, K. Nolph (1989)
Calcium Carbonate as a Phosphate Binder: Is There a Need to Adjust Peritoneal Dialysate Calcium Concentrations for Patients Using CaCO3?Peritoneal Dialysis International, 9
A. Hutchison, M. Merchant, H. Boulton, Rod Hinchcliffe, R. Gokal (1993)
Calcium and Magnesium Mass Transfer in Peritoneal Dialysis Patients Using 1.25 Mmol/L Calcium, 0.25 Mmol/L Magnesium Dialysis FluidPeritoneal Dialysis International, 13
B. Rippe, G. Stelin (1989)
Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism.Kidney international, 35 5
A. Hargens, Benjamin Zweifach (1976)
Transport between blood and peripheral lymph in intestine.Microvascular research, 11 1
Y. Kawaguchi, T. Hasegawa, M. Nakayama, H. Kubo, T. Shigematu (1997)
Issues affecting the longevity of the continuous peritoneal dialysis therapy.Kidney international. Supplement, 62
(2004)
PDI acute peritoneal tissue swelling during initiation of PD in rats [Abstract
Henk Huijgen, H. Ingen, Wim Kok, Gerard Sanders (1996)
Magnesium fractions in serum of healthy individuals and CAPD patients, measured by an ion-selective electrode and ultrafiltration.Clinical biochemistry, 29 3
E. Zakaria, J. Lofthouse, M. Flessner (1997)
In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure.American journal of physiology. Heart and circulatory physiology, 273 6
O. Heimbürger, J. Waniewski, A. Werynski, M. Park, B. Lindholm (1995)
Lyphatic absorption in CAPD patients with loss of ultrafiltration capacity.Blood purification, 13 6
B. Haraldsson, C. Ekholm, B. Rippe (1983)
Importance of molecular charge for the passage of endogenous macromolecules across continuous capillary walls, studied by serum clearance of lactate dehydrogenase (LDH) isoenzymes.Acta physiologica Scandinavica, 117 1
P. Durand, J. Chanliau, J. Gambéroni, D. Hestin, M. Kessler (1993)
Intraperitoneal hydrostatic pressure and ultrafiltration volume in CAPD.Advances in peritoneal dialysis. Conference on Peritoneal Dialysis, 9
O. Simonsen, D. Venturoli, A. Wieslander, O. Carlsson, B. Rippe (2003)
Mass transfer of calcium across the peritoneum at three different peritoneal dialysis fluid Ca2+ and glucose concentrations.Kidney international, 64 1
Michel Fischbach, Börje Haraldsson (2001)
Dynamic changes of the total pore area available for peritoneal exchange in children.Journal of the American Society of Nephrology : JASN, 12 7
M. Kwong, J. Lee, M. Chan (1987)
Transperitoneal Calcium and Magnesium Transfer during an 8-Hour DialysisPeritoneal Dialysis International, 7
C. Douma, D. Waart, D. Struijk, R. Krediet (1997)
The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD.Kidney international, 51 6
H. Saha, A. Harmoinen, A. Pasternack (1997)
Measurement of Serum Ionized Magnesium in Capd PatientsPeritoneal Dialysis International, 17
B. Rosengren, B. Rippe (2003)
Blood flow limitation in vivo of small solute transfer during peritoneal dialysis in rats.Journal of the American Society of Nephrology : JASN, 14 6
T. Wang, H. Cheng, O. Heimbürger, J. Waniewski, J. Bergström, B. Lindholm (1998)
Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.Kidney international, 53 2
Qing Zhu, O. Carlsson, B. Rippe (1998)
Clearance of Tracer Albumin from Peritoneal Cavity to Plasma at Low Intraperitoneal Volumes and Hydrostatic PressuresPeritoneal Dialysis International, 18
E. Zakaria, B. Rippe (1995)
Peritoneal Fluid and Tracer Albumin Kinetics in the Rat. Effects of Increases in Intraperitoneal Hydrostatic PressurePeritoneal Dialysis International, 15
B. Rippe, L. Levin (1998)
Should Dialysate Calcium be Varied in Proportion to the Amount of Ultrafiltration in Peritoneal Dialysis Dwells? Directions from a Computer SimulationPeritoneal Dialysis International, 18
B. Barber, T. Schultz, D. Randlett (1990)
Comparative analysis of protein content in rat mesenteric tissue, peritoneal fluid, and plasma.The American journal of physiology, 258 5 Pt 1
A. Imholz, G. Koomen, D. Struijk, Lambertus Arisz, R. Krediet (1993)
Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD.Kidney international, 44 5
B. Rippe, J. Arteaga, D. Venturoli (2001)
Aquaporins are Unlikely to be Affected in Marked Ultrafiltration Failure: Results from a Computer SimulationPeritoneal Dialysis International, 21
O. Kedem, A. Katchalsky (1963)
Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranesTransactions of The Faraday Society, 59
A. Hutchison, R. Gokal (1992)
Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers.Kidney international. Supplement, 38
O. Heimbürger, Tao Wang, B. Lindholm (1999)
Alterations in Water and Solute Transport with Time on Peritoneal DialysisPeritoneal Dialysis International, 19
R. Selgas, M. Bajo, M. Fernández‐Reyes, C. Jiménez, G. Peso, C. Sánchez, F. Álvaro (1996)
Peritoneal functional changes induced by dialysate containing bicarbonate instead of lactate.Advances in peritoneal dialysis. Conference on Peritoneal Dialysis, 12
B. Rippe (1997)
How to Measure Ultrafiltration Failure: 2.27% Or 3.86% Glucose?Peritoneal Dialysis International, 17
G. Stelin, Bengt Rippe (1990)
A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD.Kidney international, 38 3
J. Rubin, P. Rust, P. Brown, R. Popovich, K. Nolph (1981)
A comparison of peritoneal transport in patients with psoriasis and uremia.Nephron, 29 3-4
El Zakaria, J. Lofthouse, M. Flessner (1999)
In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle.American journal of physiology. Heart and circulatory physiology, 276 2
Hugo Abensur, Romão Je, Prado Eb, E. Kakehashi, Emil Sabbaga, M. Marcondes (1993)
Influence of the hydrostatic intraperitoneal pressure and the cardiac function on the lymphatic absorption rate of the peritoneal cavity in CAPD.Advances in peritoneal dialysis. Conference on Peritoneal Dialysis, 9
R. Krediet, E. Boeschoten, D. Struijk, L. Arisz (1988)
Differences in the peritoneal transport of water, solutes and proteins between dialysis with two- and with three-litre exchanges.Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 3 2
J. Graff, S. Fugleberg, J. Brahm, Niels Fogh-Andersen (1996)
The transport of phosphate between the plasma and dialysate compartments in peritoneal dialysis is influenced by an electric potential difference.Clinical physiology, 16 3
J. Delmez, E. Slatopolsky, K. Martin, Barbara Gearing, H. Harter (1982)
Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis.Kidney international, 21 6
Sophie Combet, T. Miyata, P. Moulin, D. Pouthier, É. Goffin, O. Devuyst (2000)
Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis.Journal of the American Society of Nephrology : JASN, 11 4
R. Krediet, B. Lindholm, B. Rippe (2000)
Pathophysiology of Peritoneal Membrane FailurePeritoneal Dialysis International, 20
M. Maspers, J. Björnberg, S. Mellander (1990)
Relation between capillary pressure and vascular tone over the range from maximum dilatation to maximum constriction in cat skeletal muscle.Acta physiologica Scandinavica, 140 1
(1984)
Control of microcirculation and blood-tissue exchange
H. Worth (1985)
A Comparison of the Measurement of Sodium and Potassium by Flame Photometry and Ion-Selective ElectrodeAnnals of Clinical Biochemistry, 22
J. Waniewski, O. Heimbürger, A. Werynski, B. Lindholm (1996)
Diffusive mass transport coefficients are not constant during a single exchange in continuous ambulatory peritoneal dialysis.ASAIO journal, 42 5
O. Heimbürger, J. Waniewski, Andrzej Warynski, A. Tranaeus, B. Lindholm (1990)
Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity.Kidney international, 38 3
Tao Wang, J. Waniewski, O. Heimbürger, A. Werynski, Bengt Lindholm (1997)
A quantitative analysis of sodium transport and removal during peritoneal dialysis.Kidney international, 52 6
J. Garrett, R. Cuddihee (1968)
Calcium absorption during peritoneal dialysis.Transactions - American Society for Artificial Internal Organs, 14
P. Hirszel, M. Lasrich, J. Maher, J. Maher (2008)
Prediction of solute transport during peritoneal dialysis.Artificial organs, 3 3
Bengt Rippe, Lars Levin (2000)
Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD.Kidney international, 57 6
H. Wiig, R. Reed (1985)
Interstitial compliance and transcapillary Starling pressures in cat skin and skeletal muscle.The American journal of physiology, 248 5 Pt 2
Prakash Keshaviah, Paul Emerson, E. Vonesh, J. Brandes (1994)
Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis.Journal of the American Society of Nephrology : JASN, 4 10
B. Haraldsson, B. Rippe (1986)
Restricted diffusion of CrEDTA and cyanocobalamine across the exchange vessels in rat hindquarters.Acta physiologica Scandinavica, 127 3
R. Krediet, S. Esch, W. Smit, W. Michels, M. Zweers, M. Ho-dac-Pannekeet, D. Struijk (2002)
Peritoneal Membrane Failure in Peritoneal Dialysis PatientsBlood Purification, 20
El Zakaria, J. Lofthouse, M. Flessner (2000)
Effect of intraperitoneal pressures on tissue water of the abdominal muscle.American journal of physiology. Renal physiology, 278 6
A. Imholz, G. Koomen, D. Struijk, L. Arisz, R. Krediet (1994)
Fluid and solute transport in CAPD patients using ultralow sodium dialysate.Kidney international, 46 2
B. Rippe, A. Kamiya, B. Folkow (1978)
Simultaneous measurements of capillary diffusion and filtration exchange during shifts in filtration-absorption and at graded alterations in the capillary permeability surface area products (PS).Acta physiologica Scandinavica, 104 3
J. Waniewski, A. Werynski, O. Heimbürger, B. Lindholm (1991)
A comparative analysis of mass transport models in peritoneal dialysis.ASAIO transactions, 37 2
T. Wang, H. Cheng, O. Heimbürger, J. Bergström, B. Lindholm (1999)
Vasodilatation by intraperitoneal addition of nitroprusside is not a model for high peritoneal transport.Advances in peritoneal dialysis. Conference on Peritoneal Dialysis, 15
Hui-hong Cheng, Tao Wang, O. Heimbürger, J. Bergström, B. Lindholm (2001)
Fluid and Solute Transport using Different Sodium Concentrations in Peritoneal Dialysis SolutionsPeritoneal Dialysis International, 21
A. Hutchison, N. Ofsthun, D. Howarth, R. Gokal (1992)
The Effect of Hemoglobin Concentration on Peritoneal Mass Transfer and Drain Volumes in Continuous Ambulatory Peritoneal DialysisPeritoneal Dialysis International, 12
O. Simonsen, A. Wieslander, C. Landgren, B. Rippe (1996)
Less infusion pain and elevated level of cancer antigen 125 by the use of a new and more biocompatible PD fluid.Advances in peritoneal dialysis. Conference on Peritoneal Dialysis, 12
Garrett Jj, Cuddihee Re (1968)
Calcium absorption during peritoneal dialysis.Asaio Journal, 14
Tao Wang, O. Heimbürger, Hui-hong Cheng, J. Waniewski, Jonas Bergström, B. Lindholm (1997)
Effect of increased dialysate fill volume on peritoneal fluid and solute transport.Kidney international, 52 4
W. Smit, M. Langedijk, N. Schouten, Nicole Berg, D. Struijk, R. Krediet (2000)
A Comparison between 1.36% and 3.86% Glucose Dialysis Solution for the Assessment of Peritoneal Membrane FunctionPeritoneal Dialysis International, 20
J. Leypoldt, David Charney, Alfred Cheung, Cynthia Naprestek, Bonnie Akin, Ty Shockley (1995)
Ultrafiltration and solute kinetics using low sodium peritoneal dialysate.Kidney international, 48 6
B. Rippe, G. Stelin, B. Haraldsson (1991)
Computer simulations of peritoneal fluid transport in CAPD.Kidney international, 40 2
O. Devuyst, S. Nielsen, J. Cosyns, Barbara Smith, P. Agre, J. Squifflet, D. Pouthier, É. Goffin (1998)
Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum.American journal of physiology. Heart and circulatory physiology, 275 1
V. Milia, S. Filippo, M. Crepaldi, S. Andrulli, Paolo Marai, G. Bacchini, L. Vecchio, Francesco Locatelli (2000)
Spurious estimations of sodium removal during CAPD when [Na](+) is measured by Na electrode methodology.Kidney international, 58 5
J. Waniewski, O. Heimbürger, A. Werynski, B. Lindholm (1996)
Osmotic Conductance of the Peritoneum in Capd Patients with Permanent Loss of Ultrafiltration CapacityPeritoneal Dialysis International, 16
J. Waniewski, A. Werynski, O. Heimbürger, B. Lindholm (1991)
Simple models for description of small-solute transport in peritoneal dialysis.Blood purification, 9 3
D. Struijk, G. Koomen, R. Krediet, L. Arisz (1992)
Indirect measurement of lymphatic absorption in CAPD patients is not influenced by trapping.Kidney international, 41 6
M. Zweers, A. Imholz, D. Struijk, R. Krediet (1999)
Correction of sodium sieving for diffusion from the circulation.Advances in peritoneal dialysis. Conference on Peritoneal Dialysis, 15
M. Pannekeet, A. Imholz, D. Struijk, G. Koomen, M. Langedijk, N. Schouten, Rudi Waart, J. Hiralall, R. Krediet (1995)
The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients.Kidney international, 48 3
R. Krediet, E. Boeschoten, F. Zuyderhoudt, J. Strackee, L. Arisz (1986)
Simple assessment of the efficacy of peritoneal transport in continuous ambulatory peritoneal dialysis patients.Blood purification, 4 4
K. Ateş, G. Nergizoğlu, K. Keven, A. Sen, S. Kutlay, Ş. Ertürk, N. Duman, O. Karatan, A. Ertug (2001)
Effect of fluid and sodium removal on mortality in peritoneal dialysis patients.Kidney international, 60 2
M. Feriani, J. Passlick–Deetjen, G. Greca (1995)
Factors Affecting Bicarbonate Transfer with Bicarbonate-Containing CAPD SolutionPeritoneal Dialysis International, 15
(1979)
Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances
J. Graff, S. Fugleberg, J. Brahm, N. Fogh‐Andersen (1996)
Transperitoneal transport of sodium during hypertonic peritoneal dialysis.Clinical physiology, 16 1
M. Flessner, A. Schwab (1996)
Pressure threshold for fluid loss from the peritoneal cavity.The American journal of physiology, 270 2 Pt 2
J. Graff, S. Fugleberg, P. Joffe, J. Brahm, N. Fogh‐Andersen (1995)
Parameter estimation in six numerical models of transperitoneal transport of potassium in patients undergoing peritoneal dialysis.Clinical physiology, 15 3
Jim Felt, Cathy Richard, Christine McCaffrey, Mortimer Levy (1979)
Peritoneal clearance of creatinine and inulin during dialysis in dogs: effect of splanchnic vasodilators.Kidney international, 16 4
O. Kedem, A. Katchalsky (1963)
Permeability of composite membranes
D. Oreopoulos, L. Gotloib, V. Calderaro, R. Khanna (1981)
For how long can peritoneal dialysis be continued?Canadian Medical Association journal, 124 1
W. Comper, T. Laurent (1978)
Physiological function of connective tissue polysaccharides.Physiological reviews, 58 1
J. Knochel (1969)
Formation of peritoneal fluid hypertonicity during dialysis with isotonic glucose solutions.Journal of applied physiology, 27 2
In the present review, we summarize the principles governing the transport of fluid and electrolytes across the peritoneum during continuous ambulatory peritoneal dialysis (CAPD) in “average” patients and during ultrafiltration failure (UFF), according to the three-pore model of peritoneal transport. The UF volume curves as a function of dwell time [V(t)] are determined in their early phase by the glucose osmotic conductance [product of the UF coefficient (LpS) and the glucose reflection coefficient (σg)] of the peritoneum; in their middle portion by intraperitoneal volume and glucose diffusivity; and in their late portion by the LpS, Starling forces, and lymph flow. The most common cause of UFF is increased transport of small solutes (glucose) across the peritoneum, whereas the LpS is only moderately affected. Concerning peritoneal ion transport, ions that are already more or less fully equilibrated across the membrane at the start of the dwell, such as Na+ (Cl–), Ca2+, and Mg2+, have a convection-dominated transport. The removal of these ions is proportional to UF volume (approximately 10 mmol/L Na+ and 0.12 mmol/L Ca2+ removed per deciliter UF in 4 hours).The present article examines the impact on fluid and solute transport of varying concentrations of Ca2+ and Na+ in peritoneal dialysis solutions. Particularly, the effect of “ultralow” sodium solutions on transport and UF is simulated and discussed. Ions with high initial concentration gradients across the peritoneum, such as K+, phosphate, and bicarbonate, display a diffusion-dominated transport. The transport of these ions can be adequately described by non-electrolyte equations. However, for ions that are in (or near) their diffusion equilibrium over the peritoneum (Na+, Ca2+, Mg2+), more complex ion transport equations need to be used. Due to the complexity of these equations, however, non-electrolyte transport formalism is commonly employed, which leads to a marked underestimation of mass transfer area coefficients (PS). This can be avoided by determining the PS when transperitoneal ion concentration gradients are steep.
Peritoneal Dialysis International – SAGE
Published: Jan 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.