Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Zheng, Yang Yang, Qianwang Chen (2014)
High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic frameworkNature Communications, 5
Jianming Zheng, M. Engelhard, Donghai Mei, Shuhong Jiao, B. Polzin, Ji‐Guang Zhang, Wu Xu (2017)
Electrolyte additive enabled fast charging and stable cycling lithium metal batteriesNature Energy, 2
Yang‐Kook Sun, Seung‐Taek Myung, Byung-Chun Park, J. Prakash, I. Belharouak, K. Amine (2009)
High-energy cathode material for long-life and safe lithium batteries.Nature materials, 8 4
N. Dudney, Juchuan Li (2015)
Using all energy in a batteryScience, 347
Zheng Liang, Dingchang Lin, Jie Zhao, Zhenda Lu, Yayuan Liu, Chong Liu, Yingying Lu, Haotian Wang, Kai Yan, X. Tao, Yi Cui (2016)
Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coatingProceedings of the National Academy of Sciences, 113
Kun Fu, Yunhui Gong, J. Dai, Amy Gong, Xiaogang Han, Yonggang Yao, Chengwei Wang, Yibo Wang, Yanan Chen, Chaoyi Yan, Yiju Li, E. Wachsman, Liangbing Hu (2016)
Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteriesProceedings of the National Academy of Sciences, 113
Lin Liu, Ya‐Xia Yin, Jin‐Yi Li, Shuhua Wang, Yu‐Guo Guo, L. Wan (2018)
Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen‐Doped Graphitic Carbon Foams for High‐Performance Lithium Metal AnodesAdvanced Materials, 30
Huan Ye, Sen Xin, Ya‐Xia Yin, Yu‐Guo Guo (2017)
Advanced Porous Carbon Materials for High‐Efficient Lithium Metal AnodesAdvanced Energy Materials, 7
Dingshan Yu, Kunli Goh, Hong Wang, Li Wei, Wenchao Jiang, Qiang Zhang, L. Dai, Yuan Chen (2014)
Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storageNature Nanotechnology, 9
Tuo Wang, Rodrigo Salvatierra, A. Jalilov, Jian Tian, J. Tour (2017)
Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries.ACS nano, 11 11
S. Matsuda, Y. Kubo, K. Uosaki, Shuji Nakanishi (2017)
Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrodeCarbon, 119
Snehashis Choudhury, Rahul Mangal, A. Agrawal, L. Archer (2015)
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticlesNature Communications, 6
Huigang Zhang, Xindi Yu, P. Braun (2011)
Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes.Nature nanotechnology, 6 5
F. Ding, Wu Xu, G. Graff, Jian Zhang, M. Sushko, Xilin Chen, Yuyan Shao, M. Engelhard, Z. Nie, Jie Xiao, Xingjiang Liu, P. Sushko, Jun Liu, Ji‐Guang Zhang (2013)
Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.Journal of the American Chemical Society, 135 11
Yingying Lu, Zhengyuan Tu, L. Archer (2014)
Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.Nature materials, 13 10
Katherine Harry, D. Hallinan, D. Parkinson, A. MacDowell, N. Balsara (2014)
Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.Nature materials, 13 1
Jeffrey Lopez, Allen Pei, J. Oh, G. Wang, Yi Cui, Z. Bao (2018)
Effects of Polymer Coatings on Electrodeposited Lithium Metal.Journal of the American Chemical Society, 140 37
Abdul‐Rahman Raji, Rodrigo Salvatierra, N. Kim, Xiujun Fan, Yilun Li, G. Silva, Junwei Sha, J. Tour (2017)
Lithium Batteries with Nearly Maximum Metal Storage.ACS nano, 11 6
Kuan-Hung Chen, Kevin Wood, E. Kazyak, W. LePage, Andrew Davis, Adrian Sanchez, N. Dasgupta (2017)
Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodesJournal of Materials Chemistry, 5
Shuhong Jiao, Jianming Zheng, Qiuyan Li, Xing Li, M. Engelhard, R. Cao, Ji‐Guang Zhang, Wu Xu (2017)
Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal BatteriesJoule, 2
T. Otitoju, A. Ahmad, B. Ooi (2017)
Superhydrophilic (superwetting) surfaces: A review on fabrication and applicationJournal of Industrial and Engineering Chemistry, 47
Yang‐Kook Sun, Zonghai Chen, Hyung-Joo Noh, Dong-Ju Lee, Hun‐Gi Jung, Yang Ren, Steve Wang, C. Yoon, Seung‐Taek Myung, K. Amine (2012)
Nanostructured high-energy cathode materials for advanced lithium batteries.Nature materials, 11 11
Kimura Naoki, E. Seki, H. Konishi, T. Hirano, Shin Takahashi, A. Ueda, Tatsuo Horiba (2016)
Cycle deterioration analysis of 0.6 Ah-class lithium-ion cells with cell chemistry of LiNi0.6Co0.2Mn0.2O2-based/graphiteJournal of Power Sources, 332
Yuanming Liu, X. Qin, X. Qin, Shaoqiong Zhang, Yulan Huang, F. Kang, Guohua Chen, Baohua Li (2018)
Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anodeEnergy Storage Materials
Seung Lee, N. Yabuuchi, Betar Gallant, Shuo Chen, Byeong‐Su Kim, P. Hammond, Y. Shao-horn (2010)
High-power lithium batteries from functionalized carbon-nanotube electrodes.Nature nanotechnology, 5 7
L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix, J. Tarascon (2006)
Lithium metal stripping/plating mechanisms studies: A metallurgical approachElectrochemistry Communications, 8
Ying Zhang, W. Luo, Chengwei Wang, Yiju Li, Chaoji Chen, Jianwei Song, J. Dai, Emily Hitz, Shaomao Xu, Chunpeng Yang, Yanbin Wang, Liangbing Hu (2017)
High-capacity, low-tortuosity, and channel-guided lithium metal anodeProceedings of the National Academy of Sciences, 114
Yadong Liu, Qi Liu, L. Xin, Yuzi Liu, Fan Yang, E. Stach, Jian Xie (2017)
Making Li-metal electrodes rechargeable by controlling the dendrite growth directionNature Energy, 2
Yayuan Liu, Dingchang Lin, Zheng Liang, Jie Zhao, Kai Yan, Yi Cui (2016)
Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anodeNature Communications, 7
Rui Zhang, Xiang Chen, Xin Shen, Xue‐Qiang Zhang, Xiaoru Chen, Xin‐Bing Cheng, Chong Yan, Chen‐Zi Zhao, Qiang Zhang (2018)
Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal BatteriesJoule, 2
R. Janot, Jean-Bruno Eymery, J. Tarascon (2007)
Decomposition of LiAl(NH2)4 and Reaction with LiH for a Possible Reversible Hydrogen StorageJournal of Physical Chemistry C, 111
Siya Huang, Lu Tang, H. Najafabadi, Shuo Chen, Z. Ren (2017)
A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteriesNano Energy, 38
R. Bouchet (2014)
Batteries: a stable lithium metal interface.Nature nanotechnology, 9 8
J. Drelich, E. Chibowski, D. Meng, K. Terpiłowski (2011)
Hydrophilic and superhydrophilic surfaces and materialsSoft Matter, 7
Dongping Lu, Yuyan Shao, Terence Lozano, W. Bennett, G. Graff, B. Polzin, Ji‐Guang Zhang, M. Engelhard, Natalio Saenz, W. Henderson, P. Bhattacharya, Jun Liu, Jie Xiao (2015)
Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid ElectrolytesAdvanced Energy Materials, 5
H. Christenson (2013)
Two-step crystal nucleation via capillary condensationCrystEngComm, 15
T. Ichikawa, Nobuko Hanada, S. Isobe, H. Leng, H. Fujii (2004)
Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage SystemJournal of Physical Chemistry B, 108
Lu Li, Swastik Basu, Yiping Wang, Zhizhong Chen, Prateek Hundekar, Baiwei Wang, Jian Shi, Yunfeng Shi, S. Narayanan, N. Koratkar (2018)
Self-heating–induced healing of lithium dendritesScience, 359
Weihan Li, Minsi Li, Min Wang, L. Zeng, Yan Yu (2015)
Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteriesNano Energy, 13
Zhimei Huang, Jing Ren, Wang Zhang, Meilan Xie, Yankai Li, Dan Sun, Yue Shen, Yunhui Huang (2018)
Protecting the Li‐Metal Anode in a Li–O2 Battery by using Boric Acid as an SEI‐Forming AdditiveAdvanced Materials, 30
Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun‐Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi Cui (2016)
Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nature nanotechnology, 11 7
Hikaru Sano, H. Sakaebe, Hiroshi Senoh, H. Matsumoto (2014)
Effect of Current Density on Morphology of Lithium Electrodeposited in Ionic Liquid-Based ElectrolytesJournal of The Electrochemical Society, 161
C. Brissot, M. Rosso, J. Chazalviel, S. Lascaud (1999)
Dendritic growth mechanisms in lithium/polymer cellsJournal of Power Sources, 81
C. Grey, J. Tarascon (2016)
Sustainability and in situ monitoring in battery development.Nature materials, 16 1
Bingbin Wu, J. Lochala, Tyler Taverne, Jie Xiao (2017)
The interplay between solid electrolyte interface (SEI) and dendritic lithium growthNano Energy, 40
Huan Ye, Sen Xin, Ya‐Xia Yin, Jin‐Yi Li, Yu‐Guo Guo, L. Wan (2017)
Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons.Journal of the American Chemical Society, 139 16
A. Manthiram, Xingwen Yu, Shaofei Wang (2017)
Lithium battery chemistries enabled by solid-state electrolytesNature Reviews Materials, 2
Xiaogang Han, Yunhui Gong, Kun Fu, Xingfeng He, Greg Hitz, J. Dai, A. Pearse, Boyang Liu, Howard Wang, G. Rubloff, Yifei Mo, V. Thangadurai, E. Wachsman, Liangbing Hu (2017)
Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nature materials, 16 5
A. Kushima, K. So, C. Su, P. Bai, Nariaki Kuriyama, T. Maebashi, Y. Fujiwara, M. Bazant, Ju Li (2017)
Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsamsNano Energy, 32
Mun Kim, Jin Ryu, Deepika, Young Lim, I. Nah, Kwang-Ryeol Lee, L. Archer, W. Cho (2018)
Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteriesNature Energy, 3
Chunpeng Yang, Ya‐Xia Yin, Shuai-Feng Zhang, Nianwu Li, Yu‐Guo Guo (2015)
Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodesNature Communications, 6
Huimin Zhang, Xiaobin Liao, Yuepeng Guan, Y. Xiang, M. Li, Wenfeng Zhang, Xiayu Zhu, H. Ming, Lin Lu, J. Qiu, Yaqin Huang, Gaoping Cao, Yusheng Yang, L. Mai, Yan Zhao, Hao Zhang (2018)
Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anodeNature Communications, 9
Chaojiang Niu, Jiashen Meng, Xuanpeng Wang, Chunhua Han, Mengyu Yan, Kangning Zhao, Xiaoming Xu, Wenhao Ren, Yunlong Zhao, Lin Xu, Qingjie Zhang, Dongyuan Zhao, L. Mai (2015)
General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysisNature Communications, 6
Wu Xu, Jiulin Wang, F. Ding, Xilin Chen, E. Nasybulin, Yaohui Zhang, Ji‐Guang Zhang (2014)
Lithium metal anodes for rechargeable batteriesEnergy and Environmental Science, 7
Zhinian Li, Jian Zhang, Shumao Wang, Lijun Jiang, M. Latroche, J. Du, F. Cuevas (2015)
Mechanochemistry of lithium nitride under hydrogen gas.Physical chemistry chemical physics : PCCP, 17 34
T. Hook (2017)
Power and Technology Scaling into the 5 nm Node with Stacked NanosheetsJoule, 2
Despite considerable efforts to stabilize lithium metal anode structures and prevent dendrite formation, achieving long cycling life in high-energy batteries under realistic conditions remains extremely difficult due to a combination of complex failure modes that involve accelerated anode degradation and the depletion of electrolyte and lithium metal. Here we report a self-smoothing lithium–carbon anode structure based on mesoporous carbon nanofibres, which, coupled with a lithium nickel–manganese–cobalt oxide cathode with a high nickel content, can lead to a cell-level energy density of 350–380 Wh kg−1 (counting all the active and inactive components) and a stable cycling life up to 200 cycles. These performances are achieved under the realistic conditions required for practical high-energy rechargeable lithium metal batteries: cathode loading ≥4.0 mAh cm−2, negative to positive electrode capacity ratio ≤2 and electrolyte weight to cathode capacity ratio ≤3 g Ah−1. The high stability of our anode is due to the amine functionalization and the mesoporous carbon structures that favour smooth lithium deposition.
Nature Nanotechnology – Springer Journals
Published: Apr 29, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.