Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
▪ Abstract The activities of critical enzymes in fatty acid and triacylglycerol biosynthesis are tightly controlled by different nutritional, hormonal, and developmental conditions. Feeding previously fasted animals high-carbohydrate, low-fat diets causes a dramatic induction of enzymes—such as fatty acid synthase (FAS) and mitochondrial glycerol-3-phosphate acyltransferase (GPAT)—involved in fatty acid and triacylglycerol synthesis. During fasting and refeeding, transcription of these two enzymes is coordinately regulated by nutrients and hormones, such as glucose, insulin, glucagon, glucocorticoids, and thyroid hormone. Insulin stimulates transcription of the FAS and mitochondrial GPAT genes, and glucagon antagonizes the insulin effect through the cis -acting elements within the promoters and their bound trans -acting factors. This review discusses advances made in the understanding of the transcriptional regulation of FAS and mitochondrial GPAT genes, with emphasis on elucidation of the mechanisms by which multiple nutrients and hormones achieve their effects.
Annual Review of Nutrition – Annual Reviews
Published: Jul 1, 1998
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.