Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Hannon (2005)
Results on disordered materials from the GEneral Materials diffractometer, GEM, at ISIS ☆Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 551
D. Schütz, M. Deluca, W. Krauss, A. Feteira, Tim Jackson, K. Reichmann (2012)
Lone‐Pair‐Induced Covalency as the Cause of Temperature‐ and Field‐Induced Instabilities in Bismuth Sodium TitanateAdvanced Functional Materials, 22
S. Chong, Robert Szczecinski, C. Bridges, M. Tucker, J. Claridge, M. Rosseinsky (2012)
Local structure of a pure Bi A site polar perovskite revealed by pair distribution function analysis and reverse Monte Carlo modeling: correlated off-axis displacements in a rhombohedral material.Journal of the American Chemical Society, 134 13
B. Noheda, D. Cox, G. Shirane, J. Gonzalo, L. Cross, S-E. Laboratory, NY. U.A.M., Spain. University, PA. (1999)
A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solutionApplied Physics Letters, 74
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, Toshiatsu Nagaya, Masaya Nakamura (2004)
Lead-free piezoceramicsNature, 432
M. Guennou, P. Bouvier, G. Chen, B. Dkhil, R. Haumont, G. Garbarino, J. Kreisel (2011)
Multiple high-pressure phase transitions in BiFeO3Physical Review B, 84
E. Aksel, J. Forrester, Jacob Jones, P. Thomas, K. Page, M. Suchomel (2011)
Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3Applied Physics Letters, 98
T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono (1999)
Structure determination of ferromagnetic perovskite BiMnO3IEEE Journal of Solid-state Circuits, 145
I. Troyanchuk, N. Samsonenko, E. Shapovalova, I. Kolesova, H. Shymczak (1996)
Magnetic phase transitions in the bismuth-containing manganites with perovskite structureJournal of Physics: Condensed Matter, 8
C. Laulh'e, A. Pasturel, F. Hippert, J. Kreisel (2010)
Random local strain effects in homovalent-substituted relaxor ferroelectrics: A first-principles study of BaTi0.74Zr0.26O3Physical Review B, 82
R. Comès, M. Lambert, A. Guinier (1968)
The chain structure of BaTiO3 and KNbO3Solid State Communications, 6
V. Dorcet, G. Trolliard (2008)
A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3Acta Materialia, 56
V. Shuvaeva, D. Zekria, A. Glazer, Q. Jiang, S. Weber, P. Bhattacharya, P. Thomas (2005)
Local structure of the lead-free relaxor ferroelectric (KxNa1-x)0.5Bi0.5TiO3Physical Review B, 71
T. Egami, S. Billinge (2003)
Underneath the Bragg Peaks: Structural Analysis of Complex Materials
D. Keen (2001)
A comparison of various commonly used correlation functions for describing total scatteringJournal of Applied Crystallography, 34
Oswaldo Di'eguez, O. Gonz'alez-V'azquez, J. Wojdel, J. Íñiguez (2010)
First-principles predictions of low-energy phases of multiferroic BiFeO 3Physical Review B, 83
Yongmei Jin, Yu Wang, A. Khachaturyan, Jiefang Li, D. Viehland (2003)
Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomainsJournal of Applied Physics, 94
J. Kreisel, P. Bouvier, B. Dkhil, P. Thomas, A. Glazer, T. Welberry, B. Chaabane, M. Mezouar (2003)
High-pressure x-ray scattering of oxides with a nanoscale local structure: Application to Na 1 / 2 Bi 1 / 2 TiO 3Physical Review B, 68
G. Catalán, J. Scott (2009)
Physics and Applications of Bismuth FerriteAdvanced Materials, 21
Shanqing Zhang, A. Kounga, E. Aulbach, T. Granzow, W. Jo, H. Kleebe, J. Rödel (2008)
Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature propertiesJournal of Applied Physics, 103
S. Gorfman, P. Thomas (2010)
Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3Journal of Applied Crystallography, 43
Ruyan Guo, L. Cross, Seung-Eek Park, Beatriz Noheda, Beatriz Noheda, D. Cox, G. Shirane (1999)
Origin of the high piezoelectric response in PbZr1-xTixO3Physical review letters, 84 23
J. Rödel, W. Jo, Klaus Seifert, E. Anton, T. Granzow, Dragan Damjanovic (2009)
Perspective on the Development of Lead‐free PiezoceramicsJournal of the American Ceramic Society, 92
R. Theissmann, L. Schmitt, J. Kling, R. Schierholz, K. Schönau, H. Fuess,, M. Knapp, H. Kungl, M. Hoffmann (2007)
Nanodomains in morphotropic lead zirconate titanate ceramics : on the origin of the strong piezoelectric effectJournal of Applied Physics, 102
J. Moreau, C. Michel, R. Gerson, W. James (1971)
Ferroelectric BiFeO3 X-ray and neutron diffraction studyJournal of Physics and Chemistry of Solids, 32
D. Vanderbilt, M. Cohen (2000)
Monoclinic and triclinic phases in higher-order Devonshire theoryPhysical Review B, 63
M. Geday, J. Kreisel, A. Glazer, K. Roleder (2000)
Birefringence imaging of phase transitions: application to Na0.5Bi0.5TiO3Journal of Applied Crystallography, 33
Y. Chiang, G. Farrey, A. Soukhojak (1998)
Lead-free high-strain single-crystal piezoelectrics in the alkaline–bismuth–titanate perovskite familyApplied Physics Letters, 73
S. Norberg, M. Tucker, S. Hull (2009)
Bond valence sum: a new soft chemical constraint for RMCProfileJournal of Applied Crystallography, 42
I. Grinberg, V. Cooper, A. Rappe (2002)
Relationship between local structure and phase transitions of a disordered solid solutionNature, 419
H. Fu, R. Cohen (2000)
Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectricsNature, 403
Jones, Thomas (2000)
The tetragonal phase of Na(0.5)Bi(0.5)TiO3--a new variant of the perovskite structureActa crystallographica. Section B, Structural science, 56 (Pt 3)
M. Dove, M. Tucker, D. Keen (2002)
Neutron total scattering method: simultaneous determination of long-range and short-range order in disordered materialsEuropean Journal of Mineralogy, 14
Shanqing Zhang, A. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, J. Rödel (2008)
Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent propertiesJournal of Applied Physics, 103
G. Haertling (1999)
Ferroelectric ceramics : History and technologyJournal of the American Ceramic Society, 82
Since the calculation of the fi t of F ( Q ) uses a different algorithm to that of the Bragg profi le data
S. Gorfman, A. Glazer, Y. Noguchi, M. Miyayama, H. Luo, P. Thomas (2012)
Observation of a low-symmetry phase in Na0.5Bi0.5TiO3 crystals by optical birefringence microscopyJournal of Applied Crystallography, 45
G. Jones, P. Thomas (2002)
Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3).Acta crystallographica. Section B, Structural science, 58 Pt 2
R. Zeches, M. Rossell, Jinxing Zhang, A. Hatt, Qing He, Chan-Ho Yang, Ajay Kumar, C. Wang, A. Melville, A. Melville, C. Adamo, C. Adamo, G. Sheng, Y. Chu, J. Ihlefeld, J. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, Long-Qing Chen, D. Schlom, N. Spaldin, L. Martin, L. Martin, R. Ramesh (2009)
A Strain-Driven Morphotropic Phase Boundary in BiFeO3Science, 326
ABO3 perovskite‐type solid solutions display a large variety of structural and physical properties, which can be tuned by chemical composition or external parameters such as temperature, pressure, strain, electric, or magnetic fields. Some solid solutions show remarkably enhanced physical properties including colossal magnetoresistance or giant piezoelectricity. It has been recognized that structural distortions, competing on the local level, are key to understanding and tuning these remarkable properties, yet, it remains a challenge to experimentally observe such local structural details. Here, from neutron pair‐distribution analysis, a temperature‐dependent 3D atomic‐level model of the lead‐free piezoelectric perovskite Na0.5Bi0.5TiO3 (NBT) is reported. The statistical analysis of this model shows how local distortions compete, how this competition develops with temperature, and, in particular, how different polar displacements of Bi3+ cations coexist as a bifurcated polarization, highlighting the interest of Bi‐based materials in the search for new lead‐free piezoelectrics.
Advanced Functional Materials – Wiley
Published: Jan 14, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.