Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Lawrie, M. Noble, P. Tunnah, N. Brown, L. Johnson, J. Endicott (1997)
Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2Nature Structural Biology, 4
Ying‐Nan Chen, S. Sharma, T. Ramsey, Li Jiang, Mary Martin, Kayla Baker, P. Adams, K. Bair, W. Kaelin (1999)
Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists.Proceedings of the National Academy of Sciences of the United States of America, 96 8
Faming Zhang, A. Strand, D. Robbins, M. Cobb, E. Goldsmith (1994)
Atomic structure of the MAP kinase ERK2 at 2.3 Å resolutionNature, 367
Francisco Arguello, Mark Alexander, Judith Sterry, Gabriela Tudor, Erik Smith, Naina Kalavar, John Greene, William Koss, David Morgan, Sherman Stinson, Timothy Siford, W. Alvord, R. Klabansky, E. Sausville (1998)
Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity In vivo against human leukemia and lymphoma xenografts.Blood, 91 7
A. Russo, P. Jeffrey, N. Pavletich (1996)
Structural basis of cyclin-dependent kinase activation by phosphorylationNature Structural Biology, 3
F. Sicheri, I. Moarefi, J. Kuriyan (1997)
Crystal structure of the Src family tyrosine kinase HckNature, 385
N. Brown, M. Noble, J. Endicott, E. Garman, S. Wakatsuki, Edward Mitchell, B. Rasmussen, Tim Hunt, Louise Johnson (1995)
The crystal structure of cyclin A.Structure, 3 11
F. Meggio, A. Deana, M. Ruzzene, A. Brunati, L. Cesaro, Barbara Guerra, Thomas Meyer, H. Mett, Doriano Fabbro, P. Furet, Grażyna Dobrowolska, L. Pinna (1995)
Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2.European journal of biochemistry, 234 1
B. Canagarajah, A. Khokhlatchev, M. Cobb, E. Goldsmith (1997)
Activation Mechanism of the MAP Kinase ERK2 by Dual PhosphorylationCell, 90
B. Grant, J. Adams (1996)
Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques.Biochemistry, 35 6
N. Narayana, S. Cox, N. Xuong, L. Eyck, S. Taylor (1997)
A binary complex of the catalytic subunit of cAMP-dependent protein kinase and adenosine further defines conformational flexibility.Structure, 5 7
S. Hubbard (1997)
Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analogThe EMBO Journal, 16
A. Russo, P. Jeffrey, A. Patten, J. Massagué, N. Pavletich (1996)
Crystal structure of the p27Kip1 cyclin-dependent-kinase inibitor bound to the cyclin A–Cdk2 complexNature, 382
David Owen, Martin Noble, Elspeth Garman, A. Papageorgiou, Louise Johnson (1995)
Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product.Structure, 3 5
B. Kemp, D. Bylund, T. Huang, E. Krebs (1975)
Substrate specificity of the cyclic AMP-dependent protein kinase.Proceedings of the National Academy of Sciences of the United States of America, 72 9
Shu-hong Hu, M. Parker, J. Lei, M. Wilce, G. Benian, B. Kemp (1994)
Insights into autoregulation from the crystal structure of twitchin kinaseNature, 369
Jane Endicott, Martin Noble, Julie Tucker (1999)
Cyclin-dependent kinases: inhibition and substrate recognition.Current opinion in structural biology, 9 6
Peter Adams, Xiaotong Li, William Sellers, Kayla Baker, X. Leng, J. Harper, Y. Taya, William Kaelin (1999)
Retinoblastoma Protein Contains a C-terminal Motif That Targets It for Phosphorylation by Cyclin-cdk ComplexesMolecular and Cellular Biology, 19
G. Olah, R. Mitchell, T. Sosnick, D. Walsh, J. Trewhella (1993)
Solution structure of the cAMP-dependent protein kinase catalytic subunit and its contraction upon binding the protein kinase inhibitor peptide.Biochemistry, 32 14
E. Sutherland, W. Wosilait (1955)
Inactivation and Activation of Liver PhosphorylaseNature, 175
B. Kobe, J. Heierhorst, S. Feil, M. Parker, G. Benian, K. Weiss, B. Kemp (1996)
Giant protein kinases: domain interactions and structural basis of autoregulation.The EMBO Journal, 15
Andrew Smith (1998)
Genome sequence of the nematode C-elegans: A platform for investigating biologyScience, 282
M. Mohammadi, J. Schlessinger, S. Hubbard (1996)
Structure of the FGF Receptor Tyrosine Kinase Domain Reveals a Novel Autoinhibitory MechanismCell, 86
John Williams, A. Weijland, S. Gonfloni, A. Thompson, S. Courtneidge, G. Superti-Furga, R. Wierenga (1997)
The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions.Journal of molecular biology, 274 5
S. Hubbard, Lei Wei, W. Hendrickson (1994)
Crystal structure of the tyrosine kinase domain of the human insulin receptorNature, 372
E. Fischer, E. Krebs (1955)
Conversion of phosphorylase b to phosphorylase a in muscle extracts.The Journal of biological chemistry, 216 1
T. Hunter (1987)
A thousand and one protein kinasesCell, 50
D. Knighton, Jianhua Zheng, L. Eyck, V. Ashford, N. Xuong, S. Taylor, J. Sowadski (1991)
Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase.Science, 253 5018
M. Yoon, Paul Cook (1987)
Chemical mechanism of the adenosine cyclic 3',5'-monophosphate dependent protein kinase from pH studies.Biochemistry, 26 13
J. Goldberg, A. Nairn, J. Kuriyan (1996)
Structural Basis for the Autoinhibition of Calcium/Calmodulin-Dependent Protein Kinase ICell, 84
D. Barford, S. Hu, L. Johnson (1992)
Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP.Journal of molecular biology, 218 1
J. Adams, S. Taylor (1992)
Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments.Biochemistry, 31 36
N. Brown, M. Noble, A. Lawrie, M. Morris, P. Tunnah, G. Divita, L. Johnson, J. Endicott (1999)
Effects of Phosphorylation of Threonine 160 on Cyclin-dependent Kinase 2 Structure and Activity*The Journal of Biological Chemistry, 274
M. Ho, H. Bramson, D. Hansen, J. Knowles, E. Kaiser (1988)
Stereochemical course of the phospho group transfer catalyzed by cAMP-dependent protein kinaseJournal of the American Chemical Society, 110
N. Brown, M. Noble, J. Endicott, L. Johnson (1999)
The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinasesNature Cell Biology, 1
P. Jeffrey, A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massagué, N. Pavletich (1995)
Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complexNature, 376
Edward Lowe, Martin Noble, V. Skamnaki, N. Oikonomakos, David Owen, Louise Johnson (1997)
The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognitionThe EMBO Journal, 16
Sarah Cox, E. Radzio‐Andzelm, S Taylor (1994)
Domain movements in protein kinases.Current opinion in structural biology, 4 6
V. Skamnaki, David Owen, Martin Noble, E. Lowe, G. Lowe, N. Oikonomakos, Louise Johnson (1999)
Catalytic mechanism of phosphorylase kinase probed by mutational studies.Biochemistry, 38 44
J. Chen, P. Saha, S. Kornbluth, B. Dynlacht, Anindya Dutta (1996)
Cyclin-binding motifs are essential for the function of p21CIP1Molecular and Cellular Biology, 16
L. Johnson, M. Noble, D. Owen (1996)
Active and Inactive Protein Kinases: Structural Basis for RegulationCell, 85
U. Schulze-Gahmen, Hendrik Bondt, Sung-Hou Kim (1996)
High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design.Journal of medicinal chemistry, 39 23
Songyang Zhou, S. Blechner, N. Hoagland, M. Hoekstra, H. Piwnica-Worms, L. Cantley (1994)
Use of an oriented peptide library to determine the optimal substrates of protein kinasesCurrent Biology, 4
H. Bondt, J. Rosenblatt, J. Jancarik, H. Jones, David Morgant, Sung-Hou Kim (1993)
Crystal structure of cyclin-dependent kinase 2Nature, 363
D. Graves (1983)
Use of peptide substrates to study the specificity of phosphorylase kinase phosphorylation.Methods in enzymology, 99
Michelle Garrett, Ali Fattaey (1999)
CDK inhibition and cancer therapy.Current opinion in genetics & development, 9 1
L. Meijer (1996)
Chemical inhibitors of cyclin-dependent kinases.Trends in cell biology, 6 10
Ralph Hoessel, S. Leclerc, J. Endicott, Martin Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, Wei-ci Tang, G. Eisenbrand, L. Meijer (1999)
Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinasesNature Cell Biology, 1
V. Helms, J. McCammon (1997)
Kinase conformations: A computational study of the effect of ligand bindingProtein Science, 6
Zhulun Wang, P. Harkins, R. Ulevitch, Jiahuai Han, M. Cobb, E. Goldsmith (1997)
The structure of mitogen-activated protein kinase p38 at 2.1-A resolution.Proceedings of the National Academy of Sciences of the United States of America, 94 6
Susan Taylor, E. Radzio‐Andzelm (1994)
Three protein kinase structures define a common motif.Structure, 2 5
W. Hackmann (1993)
Tesla's sparks of imaginationNature, 363
K. Wilson, M. Fitzgibbon, P. Caron, J. Griffith, Wenyong Chen, P. Mccaffrey, S. Chambers, M. Su (1996)
Crystal Structure of p38 Mitogen-activated Protein Kinase*The Journal of Biological Chemistry, 271
Jie Zhou, Joseph Adams (1997)
Is there a catalytic base in the active site of cAMP-dependent protein kinase?Biochemistry, 36 10
Wenqing Xu, S. Harrison, M. Eck (1997)
Three-dimensional structure of the tyrosine kinase c-SrcNature, 385
Songyang Zhou, K. Lu, Young Kwon, L. Tsai, O. Filhol, C. Cochet, D. Brickey, T. Soderling, C. Bartleson, D. Graves, A. Demaggio, M. Hoekstra, J. Blenis, T. Hunter, L. Cantley (1996)
A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1Molecular and Cellular Biology, 16
Rui-Ming Xu, Gilles Carmel, Robert Sweet, Jeff Kuret, Xiaodong Cheng (1995)
Crystal structure of casein kinase‐1, a phosphate‐directed protein kinase.The EMBO Journal, 14
Jian-Xin Zheng, E. Trafny, D. Knighton, N. Xuong, Susan Taylor, L. Eyck, J. Sowadski (1993)
2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor.Acta crystallographica. Section D, Biological crystallography, 49 Pt 3
H. Yamaguchi, W. Hendrickson (1996)
Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylationNature, 384
D. Morgan (1997)
Cyclin-dependent kinases: engines, clocks, and microprocessors.Annual review of cell and developmental biology, 13
D. Bossemeyer, R. Engh, V. Kinzel, H. Ponstingl, R. Huber (1993)
Phosphotransferase and substrate binding mechanism of the cAMP‐dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5‐24).The EMBO Journal, 12
B. Schulman, D. Lindstrom, E. Harlow (1998)
Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A.Proceedings of the National Academy of Sciences of the United States of America, 95 18
T. Hunter, G. Plowman (1997)
The protein kinases of budding yeast: six score and more.Trends in biochemical sciences, 22 1
D. Knighton, Jianhua Zheng, L. Eyck, N. Xuong, S. Taylor, J. Sowadski (1991)
Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase.Science, 253 5018
Peter Adams, W. Sellers, Sushil Sharma, WU ARTHURD., C. Nalin, W. Kaelin (1996)
Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitorsMolecular and Cellular Biology, 16
N. Gray, L. Wodicka, A. Thunnissen, T. Norman, Soojin Kwon, F. Espinoza, D. Morgan, G. Barnes, S. Leclerc, L. Meijer, Sung-Hou Kim, D. Lockhart, Peter Schultz (1998)
Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors.Science, 281 5376
Liang Zhu, E. Harlow, B. Dynlacht (1995)
p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F.Genes & development, 9 14
W. Hon, G. McKay, P. Thompson, R. Sweet, Daniel Yang, Gerard Wright, A. Berghuis (1997)
Structure of an Enzyme Required for Aminoglycoside Antibiotic Resistance Reveals Homology to Eukaryotic Protein KinasesCell, 89
S. Hanks, T. Hunter (1995)
The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification 1The FASEB Journal, 9
K. Longenecker, P. Roach, T. Hurley (1996)
Three-dimensional structure of mammalian casein kinase I: molecular basis for phosphate recognition.Journal of molecular biology, 257 3
(1991)
Glycogen Phosphorylase pp. 123, World Scienti¢c, Singapore
B. Dynlacht, Kenneth Moberg, Jacqueline Lees, Ed Harlow, Liang Zhu (1997)
Specific regulation of E2F family members by cyclin-dependent kinasesMolecular and Cellular Biology, 17
E. Krebs, E. Fischer (1956)
The phosphorylase b to a converting enzyme of rabbit skeletal muscle.Biochimica et biophysica acta, 20 1
Protein kinases catalyse phospho transfer reactions from ATP to serine, threonine or tyrosine residues in target substrates and provide key mechanisms for control of cellular signalling processes. The crystal structures of 12 protein kinases are now known. These include structures of kinases in the active state in ternary complexes with ATP (or analogues) and inhibitor or peptide substrates (e.g. cyclic AMP dependent protein kinase, phosphorylase kinase and insulin receptor tyrosine kinase); kinases in both active and inactive states (e.g. CDK2/cyclin A, insulin receptor tyrosine kinase and MAPK); kinases in the active state (e.g. casein kinase 1, Lck); and kinases in inactive states (e.g. twitchin kinase, calcium calmodulin kinase 1, FGF receptor kinase, c‐Src and Hck). This paper summarises the detailed information obtained with active phosphorylase kinase ternary complex and reviews the results with reference to other kinase structures for insights into mechanisms for substrate recognition and control.
FEBS Letters – Wiley
Published: Jun 23, 1998
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.