Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ
Abstract
ORIGINAL RESEARCH ARTICLE published: 27 August 2013 MOLECULAR NEUROSCIENCE doi: 10.3389/fnmol.2013.00023 Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ 1 1 2 1 1 Wai Si Chan , Alexandra Sideris , Jhon J. Sutachan , Jose V. Montoya G , Thomas J. J. Blanck and Esperanza Recio-Pinto * Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia Edited by: Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in Andreas Vlachos, Goethe University both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms Frankfurt, Germany underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward Reviewed by: a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated Sebastian Jessberger, University of signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal Zurich, Switzerland Li Zhang, National Institute on cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We Alcohol Abuse and Alcoholism-NIH, observed an increase in the number of cells expressing the microtubule-associated protein USA 2 (MAP2) over time, indicating
MingG. L.SongH. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250
10.1146/annurev.neuro.28.051804.10145916022595, MingG. L.SongH. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci. 28, 223–250
10.1146/annurev.neuro.28.051804.10145916022595
(XiaZ.DickensM.RaingeaudJ.DavisR. J.GreenbergM. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science
270, 1326–1331
10.1126/science.270.5240.13267481820)
XiaZ.DickensM.RaingeaudJ.DavisR. J.GreenbergM. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science
270, 1326–1331
10.1126/science.270.5240.13267481820, XiaZ.DickensM.RaingeaudJ.DavisR. J.GreenbergM. E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science
270, 1326–1331
10.1126/science.270.5240.13267481820
(HamiltonL. K.TruongM. K.BednarczykM. R.AumontA.FernandesK. J. (2009). Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience
164, 1044–1056
10.1016/j.neuroscience.2009.09.00619747531)
HamiltonL. K.TruongM. K.BednarczykM. R.AumontA.FernandesK. J. (2009). Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience
164, 1044–1056
10.1016/j.neuroscience.2009.09.00619747531, HamiltonL. K.TruongM. K.BednarczykM. R.AumontA.FernandesK. J. (2009). Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience
164, 1044–1056
10.1016/j.neuroscience.2009.09.00619747531
Journal of neuropathology and experimental neurology, 58 5
(DanilovA. I.CovacuR.MoeM. C.LangmoenI. A.JohanssonC. B.OlssonT. (2006). Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur. J. Neurosci. 23, 394–400
10.1111/j.1460-9568.2005.04563.x16420447)
DanilovA. I.CovacuR.MoeM. C.LangmoenI. A.JohanssonC. B.OlssonT. (2006). Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur. J. Neurosci. 23, 394–400
10.1111/j.1460-9568.2005.04563.x16420447, DanilovA. I.CovacuR.MoeM. C.LangmoenI. A.JohanssonC. B.OlssonT. (2006). Neurogenesis in the adult spinal cord in an experimental model of multiple sclerosis. Eur. J. Neurosci. 23, 394–400
10.1111/j.1460-9568.2005.04563.x16420447
(ShenQ.WangY.KokovayE.LinG.ChuangS. M.GoderieS. K. (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell
3, 289–300
10.1016/j.stem.2008.07.02618786416)
(PaliourasG. N.HamiltonL. K.AumontA.JoppeS. E.Barnabe-HeiderF.FernandesK. J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J. Neurosci. 32, 15012–15026
10.1523/JNEUROSCI.2248-12.201223100423)
PaliourasG. N.HamiltonL. K.AumontA.JoppeS. E.Barnabe-HeiderF.FernandesK. J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J. Neurosci. 32, 15012–15026
10.1523/JNEUROSCI.2248-12.201223100423, PaliourasG. N.HamiltonL. K.AumontA.JoppeS. E.Barnabe-HeiderF.FernandesK. J. (2012). Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J. Neurosci. 32, 15012–15026
10.1523/JNEUROSCI.2248-12.201223100423
(HorkyL. L.GalimiF.GageF. H.HornerP. J. (2006). Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525–538
10.1002/cne.2106516874803)
HorkyL. L.GalimiF.GageF. H.HornerP. J. (2006). Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525–538
10.1002/cne.2106516874803, HorkyL. L.GalimiF.GageF. H.HornerP. J. (2006). Fate of endogenous stem/progenitor cells following spinal cord injury. J. Comp. Neurol. 498, 525–538
10.1002/cne.2106516874803
(ShihabuddinL. S.HornerP. J.RayJ.GageF. H. (2000). Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735
11102479)
ShihabuddinL. S.HornerP. J.RayJ.GageF. H. (2000). Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735
11102479, ShihabuddinL. S.HornerP. J.RayJ.GageF. H. (2000). Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20, 8727–8735
11102479
David
Weiss,G.
Fried,Michael
Chancellor,G.
Herbison,J.
Ditunno,W.
Staas (1998)
Archives of physical medicine and rehabilitation, 77 11
(DoetschF.Garcia-VerdugoJ. M.Alvarez-BuyllaA. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061
9185542)
DoetschF.Garcia-VerdugoJ. M.Alvarez-BuyllaA. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061
9185542, DoetschF.Garcia-VerdugoJ. M.Alvarez-BuyllaA. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061
9185542
(LendahlU.ZimmermanL. B.MckayR. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell
60, 585–595
10.1016/0092-8674(90)90662-X1689217)
LendahlU.ZimmermanL. B.MckayR. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell
60, 585–595
10.1016/0092-8674(90)90662-X1689217, LendahlU.ZimmermanL. B.MckayR. D. (1990). CNS stem cells express a new class of intermediate filament protein. Cell
60, 585–595
10.1016/0092-8674(90)90662-X1689217
(HugnotJ. P.FranzenR. (2011). The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front. Biosci. 16, 1044–1059
10.2741/373421196217)
HugnotJ. P.FranzenR. (2011). The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front. Biosci. 16, 1044–1059
10.2741/373421196217, HugnotJ. P.FranzenR. (2011). The spinal cord ependymal region: a stem cell niche in the caudal central nervous system. Front. Biosci. 16, 1044–1059
10.2741/373421196217
MistryS. K.KeeferE. W.CunninghamB. A.EdelmanG. M.CrossinK. L. (2002). Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proc. Natl. Acad. Sci. U.S.A. 99, 1621–1626
10.1073/pnas.02264659911818538, MistryS. K.KeeferE. W.CunninghamB. A.EdelmanG. M.CrossinK. L. (2002). Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proc. Natl. Acad. Sci. U.S.A. 99, 1621–1626
10.1073/pnas.02264659911818538
(MasonI. (2007). Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8, 583–596
10.1038/nrn218917637802)
MasonI. (2007). Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8, 583–596
10.1038/nrn218917637802, MasonI. (2007). Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8, 583–596
10.1038/nrn218917637802
(HuangC. C.LoS. W.HsuK. S. (2001). Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J. Physiol. 532, 731–748
10.1111/j.1469-7793.2001.0731e.x11313442)
HuangC. C.LoS. W.HsuK. S. (2001). Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J. Physiol. 532, 731–748
10.1111/j.1469-7793.2001.0731e.x11313442, HuangC. C.LoS. W.HsuK. S. (2001). Presynaptic mechanisms underlying cannabinoid inhibition of excitatory synaptic transmission in rat striatal neurons. J. Physiol. 532, 731–748
10.1111/j.1469-7793.2001.0731e.x11313442
(LiJ.WangG.WangC.ZhaoY.ZhangH.TanZ. (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation
75, 299–307
10.1111/j.1432-0436.2006.00143.x17286604)
LiJ.WangG.WangC.ZhaoY.ZhangH.TanZ. (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation
75, 299–307
10.1111/j.1432-0436.2006.00143.x17286604, LiJ.WangG.WangC.ZhaoY.ZhangH.TanZ. (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation
75, 299–307
10.1111/j.1432-0436.2006.00143.x17286604
(HornerP. J.PowerA. E.KempermannG.KuhnH. G.PalmerT. D.WinklerJ. (2000). Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228
10704497)
HornerP. J.PowerA. E.KempermannG.KuhnH. G.PalmerT. D.WinklerJ. (2000). Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228
10704497, HornerP. J.PowerA. E.KempermannG.KuhnH. G.PalmerT. D.WinklerJ. (2000). Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20, 2218–2228
10704497
CostantiniL. C.IsacsonO. (2000). Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture. Exp. Neurol. 164, 60–70
10.1006/exnr.2000.741710877916, CostantiniL. C.IsacsonO. (2000). Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture. Exp. Neurol. 164, 60–70
10.1006/exnr.2000.741710877916
(FukudaS.KatoF.TozukaY.YamaguchiM.MiyamotoY.HisatsuneT. (2003). Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 23, 9357–9366
14561863)
FukudaS.KatoF.TozukaY.YamaguchiM.MiyamotoY.HisatsuneT. (2003). Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 23, 9357–9366
14561863, FukudaS.KatoF.TozukaY.YamaguchiM.MiyamotoY.HisatsuneT. (2003). Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 23, 9357–9366
14561863
(ShechterR.ZivY.SchwartzM. (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells
25, 2277–2282
10.1634/stemcells.2006-070517540856)
ShechterR.ZivY.SchwartzM. (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells
25, 2277–2282
10.1634/stemcells.2006-070517540856, ShechterR.ZivY.SchwartzM. (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells
25, 2277–2282
10.1634/stemcells.2006-070517540856
(PalmerT. D.WillhoiteA. R.GageF. H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494
10975875)
HollisE. R.2nd.JamshidiP.LowK.BleschA.TuszynskiM. H. (2009). Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl. Acad. Sci. U.S.A. 106, 7215–7220
10.1073/pnas.081062410619359495, HollisE. R.2nd.JamshidiP.LowK.BleschA.TuszynskiM. H. (2009). Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl. Acad. Sci. U.S.A. 106, 7215–7220
10.1073/pnas.081062410619359495
(XueL.MurrayJ. H.TolkovskyA. M. (2000). The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J. Biol. Chem. 275, 8817–8824
10.1074/jbc.275.12.881710722727)
XueL.MurrayJ. H.TolkovskyA. M. (2000). The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J. Biol. Chem. 275, 8817–8824
10.1074/jbc.275.12.881710722727, XueL.MurrayJ. H.TolkovskyA. M. (2000). The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J. Biol. Chem. 275, 8817–8824
10.1074/jbc.275.12.881710722727
(SanchezC.Diaz-NidoJ.AvilaJ. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 61, 133–168
10.1016/S0301-0082(99)00046-510704996)
SanchezC.Diaz-NidoJ.AvilaJ. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 61, 133–168
10.1016/S0301-0082(99)00046-510704996, SanchezC.Diaz-NidoJ.AvilaJ. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 61, 133–168
10.1016/S0301-0082(99)00046-510704996
(HelyT. A.GrahamB.OoyenA. V. (2001). A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J. Theor. Biol. 210, 375–384
10.1006/jtbi.2001.231411397138)
HelyT. A.GrahamB.OoyenA. V. (2001). A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J. Theor. Biol. 210, 375–384
10.1006/jtbi.2001.231411397138, HelyT. A.GrahamB.OoyenA. V. (2001). A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J. Theor. Biol. 210, 375–384
10.1006/jtbi.2001.231411397138
MaD. K.PonnusamyK.SongM. R.MingG. L.SongH. (2009). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol. Brain
2, 16
10.1186/1756-6606-2-1619505325, MaD. K.PonnusamyK.SongM. R.MingG. L.SongH. (2009). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol. Brain
2, 16
10.1186/1756-6606-2-1619505325
(MiuraT.TanakaS.SeichiA.AraiM.GotoT.KatagiriH. (2000). Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp. Neurol. 166, 115–126
10.1006/exnr.2000.749311031088)
MiuraT.TanakaS.SeichiA.AraiM.GotoT.KatagiriH. (2000). Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp. Neurol. 166, 115–126
10.1006/exnr.2000.749311031088, MiuraT.TanakaS.SeichiA.AraiM.GotoT.KatagiriH. (2000). Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp. Neurol. 166, 115–126
10.1006/exnr.2000.749311031088
(BjugnR. (1993). The use of the optical disector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse–with a comparative note on the rat spinal cord. Brain Res. 627, 25–33
10.1016/0006-8993(93)90744-88293301)
BjugnR. (1993). The use of the optical disector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse–with a comparative note on the rat spinal cord. Brain Res. 627, 25–33
10.1016/0006-8993(93)90744-88293301, BjugnR. (1993). The use of the optical disector to estimate the number of neurons, glial and endothelial cells in the spinal cord of the mouse–with a comparative note on the rat spinal cord. Brain Res. 627, 25–33
10.1016/0006-8993(93)90744-88293301
K.
Meletis,F.
Barnabé-Heider,M.
Carlén,E.
Evergren,N.
Tomilin,O.
Shupliakov,J.
Frisén (2008)
(CapelaA.TempleS. (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron
35, 865–875
10.1016/S0896-6273(02)00835-812372282)
CapelaA.TempleS. (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron
35, 865–875
10.1016/S0896-6273(02)00835-812372282, CapelaA.TempleS. (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron
35, 865–875
10.1016/S0896-6273(02)00835-812372282
(BrewerG. J.TorricelliJ. R.EvegeE. K.PriceP. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576
10.1002/jnr.4903505138377226)
BrewerG. J.TorricelliJ. R.EvegeE. K.PriceP. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576
10.1002/jnr.4903505138377226, BrewerG. J.TorricelliJ. R.EvegeE. K.PriceP. J. (1993). Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576
10.1002/jnr.4903505138377226
D.
Gomez-Nicola,B.
Valle-Argos,Noemí
Pallas-Bazarra,M.
Nieto‐Sampedro (2011)
(GageF. H. (2010). Molecular and cellular mechanisms contributing to the regulation, proliferation and differentiation of neural stem cells in the adult dentate gyrus. Keio J. Med. 59, 79–83
10.2302/kjm.59.7920881448)
GageF. H. (2010). Molecular and cellular mechanisms contributing to the regulation, proliferation and differentiation of neural stem cells in the adult dentate gyrus. Keio J. Med. 59, 79–83
10.2302/kjm.59.7920881448, GageF. H. (2010). Molecular and cellular mechanisms contributing to the regulation, proliferation and differentiation of neural stem cells in the adult dentate gyrus. Keio J. Med. 59, 79–83
10.2302/kjm.59.7920881448
(ShihabuddinL. S.RayJ.GageF. H. (1997). FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148, 577–586
10.1006/exnr.1997.66979417834)
ShihabuddinL. S.RayJ.GageF. H. (1997). FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148, 577–586
10.1006/exnr.1997.66979417834, ShihabuddinL. S.RayJ.GageF. H. (1997). FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148, 577–586
10.1006/exnr.1997.66979417834
(HashimotoK.IshimaT. (2011). Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol. PLoS ONE
6:e17431
10.1371/journal.pone.001743121390260)
HashimotoK.IshimaT. (2011). Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol. PLoS ONE
6:e17431
10.1371/journal.pone.001743121390260, HashimotoK.IshimaT. (2011). Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol. PLoS ONE
6:e17431
10.1371/journal.pone.001743121390260
(JohanssonC. B.MommaS.ClarkeD. L.RislingM.LendahlU.FrisenJ. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell
96, 25–34
10.1016/S0092-8674(00)80956-39989494)
JohanssonC. B.MommaS.ClarkeD. L.RislingM.LendahlU.FrisenJ. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell
96, 25–34
10.1016/S0092-8674(00)80956-39989494, JohanssonC. B.MommaS.ClarkeD. L.RislingM.LendahlU.FrisenJ. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell
96, 25–34
10.1016/S0092-8674(00)80956-39989494
(HayashiH.TsuchiyaY.NakayamaK.SatohT.NishidaE. (2008). Down-regulation of the PI3-kinase/Akt pathway by ERK MAP kinase in growth factor signaling. Genes Cells
13, 941–947
10.1111/j.1365-2443.2008.01218.x18691227)
HayashiH.TsuchiyaY.NakayamaK.SatohT.NishidaE. (2008). Down-regulation of the PI3-kinase/Akt pathway by ERK MAP kinase in growth factor signaling. Genes Cells
13, 941–947
10.1111/j.1365-2443.2008.01218.x18691227, HayashiH.TsuchiyaY.NakayamaK.SatohT.NishidaE. (2008). Down-regulation of the PI3-kinase/Akt pathway by ERK MAP kinase in growth factor signaling. Genes Cells
13, 941–947
10.1111/j.1365-2443.2008.01218.x18691227
Z.
Xia,M.
Dickens,J.
Raingeaud,R.
Davis,M.
Greenberg (1995)
SongH.StevensC. F.GageF. H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature
417, 39–44
10.1038/417039a11986659, SongH.StevensC. F.GageF. H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature
417, 39–44
10.1038/417039a11986659
(MattsonM. P.GuthrieP. B.KaterS. B. (1988). Components of neurite outgrowth that determine neuronal cytoarchitecture: influence of calcium and the growth substrate. J. Neurosci. Res. 20, 331–345
10.1002/jnr.4902003073147336)
MattsonM. P.GuthrieP. B.KaterS. B. (1988). Components of neurite outgrowth that determine neuronal cytoarchitecture: influence of calcium and the growth substrate. J. Neurosci. Res. 20, 331–345
10.1002/jnr.4902003073147336, MattsonM. P.GuthrieP. B.KaterS. B. (1988). Components of neurite outgrowth that determine neuronal cytoarchitecture: influence of calcium and the growth substrate. J. Neurosci. Res. 20, 331–345
10.1002/jnr.4902003073147336
MadiaiF.HussainS. R.GoettlV. M.BurryR. W.StephensR. L.Jr.HackshawK. V. (2003). Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp. Brain Res. 148, 366–376
12541147, MadiaiF.HussainS. R.GoettlV. M.BurryR. W.StephensR. L.Jr.HackshawK. V. (2003). Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp. Brain Res. 148, 366–376
12541147
(VessalM.AycockA.GartonM. T.CiferriM.Darian-SmithC. (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur. J. Neurosci. 26, 2777–2794
10.1111/j.1460-9568.2007.05871.x18001275)
VessalM.AycockA.GartonM. T.CiferriM.Darian-SmithC. (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur. J. Neurosci. 26, 2777–2794
10.1111/j.1460-9568.2007.05871.x18001275, VessalM.AycockA.GartonM. T.CiferriM.Darian-SmithC. (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur. J. Neurosci. 26, 2777–2794
10.1111/j.1460-9568.2007.05871.x18001275
(GuoF.MaedaY.MaJ.XuJ.HoriuchiM.MiersL. (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J. Neurosci. 30, 12036–12049
10.1523/JNEUROSCI.1360-10.201020826667)
GuoF.MaedaY.MaJ.XuJ.HoriuchiM.MiersL. (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J. Neurosci. 30, 12036–12049
10.1523/JNEUROSCI.1360-10.201020826667, GuoF.MaedaY.MaJ.XuJ.HoriuchiM.MiersL. (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J. Neurosci. 30, 12036–12049
10.1523/JNEUROSCI.1360-10.201020826667
(Suzuki-YamamotoT.ToidaK.TsuruoY.WatanabeK.IshimuraK. (2000). Immunocytochemical localization of lung-type prostaglandin F synthase in the rat spinal cord. Brain Res. 877, 391–395
10.1016/S0006-8993(00)02709-810986358)
Suzuki-YamamotoT.ToidaK.TsuruoY.WatanabeK.IshimuraK. (2000). Immunocytochemical localization of lung-type prostaglandin F synthase in the rat spinal cord. Brain Res. 877, 391–395
10.1016/S0006-8993(00)02709-810986358, Suzuki-YamamotoT.ToidaK.TsuruoY.WatanabeK.IshimuraK. (2000). Immunocytochemical localization of lung-type prostaglandin F synthase in the rat spinal cord. Brain Res. 877, 391–395
10.1016/S0006-8993(00)02709-810986358
LiZ.TheusM. H.WeiL. (2006). Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev. Growth Differ. 48, 513–523
10.1111/j.1440-169X.2006.00889.x17026715, LiZ.TheusM. H.WeiL. (2006). Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev. Growth Differ. 48, 513–523
10.1111/j.1440-169X.2006.00889.x17026715
(QiM. L.WakabayashiY.HaroH.ShinomiyaK. (2003). Changes in FGF-2 expression in the distal spinal cord stump after complete cord transection: a comparison between infant and adult rats. Spine (Phila Pa 1976)
28, 1934–1940
10.1097/01.BRS.0000083323.38962.2A12973137)
QiM. L.WakabayashiY.HaroH.ShinomiyaK. (2003). Changes in FGF-2 expression in the distal spinal cord stump after complete cord transection: a comparison between infant and adult rats. Spine (Phila Pa 1976)
28, 1934–1940
10.1097/01.BRS.0000083323.38962.2A12973137, QiM. L.WakabayashiY.HaroH.ShinomiyaK. (2003). Changes in FGF-2 expression in the distal spinal cord stump after complete cord transection: a comparison between infant and adult rats. Spine (Phila Pa 1976)
28, 1934–1940
10.1097/01.BRS.0000083323.38962.2A12973137
S.
Kennedy,A.
Wagner,S.
Conzen,J.
Jordán,A.
Bellacosa,P.
Tsichlis,N.
Hay (1997)
(NamikiJ.TatorC. H. (1999). Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J. Neuropathol. Exp. Neurol. 58, 489–498
10.1097/00005072-199905000-0000810331437)
NamikiJ.TatorC. H. (1999). Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J. Neuropathol. Exp. Neurol. 58, 489–498
10.1097/00005072-199905000-0000810331437, NamikiJ.TatorC. H. (1999). Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury. J. Neuropathol. Exp. Neurol. 58, 489–498
10.1097/00005072-199905000-0000810331437
(KennedyS. G.WagnerA. J.ConzenS. D.JordanJ.BellacosaA.TsichlisP. N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713
10.1101/gad.11.6.7019087425)
KennedyS. G.WagnerA. J.ConzenS. D.JordanJ.BellacosaA.TsichlisP. N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713
10.1101/gad.11.6.7019087425, KennedyS. G.WagnerA. J.ConzenS. D.JordanJ.BellacosaA.TsichlisP. N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713
10.1101/gad.11.6.7019087425
MontoyaG. J.SutachanJ. J.ChanW. S.SiderisA.BlanckT. J.Recio-PintoE. (2009). Muscle-conditioned media and cAMP promote survival and neurite outgrowth of adult spinal cord motor neurons. Exp. Neurol. 220, 303–315
10.1016/j.expneurol.2009.09.00319747480, MontoyaG. J.SutachanJ. J.ChanW. S.SiderisA.BlanckT. J.Recio-PintoE. (2009). Muscle-conditioned media and cAMP promote survival and neurite outgrowth of adult spinal cord motor neurons. Exp. Neurol. 220, 303–315
10.1016/j.expneurol.2009.09.00319747480
(SantenR. J.AgranoffB. W. (1963). Studies on the estimation of deoxyribonucleic acid in rat brain. Biochim. Biophys. Acta
72, 251–262
10.1016/0926-6550(63)90339-613976364)
SantenR. J.AgranoffB. W. (1963). Studies on the estimation of deoxyribonucleic acid in rat brain. Biochim. Biophys. Acta
72, 251–262
10.1016/0926-6550(63)90339-613976364, SantenR. J.AgranoffB. W. (1963). Studies on the estimation of deoxyribonucleic acid in rat brain. Biochim. Biophys. Acta
72, 251–262
10.1016/0926-6550(63)90339-613976364
(TamuraY.KataokaY.CuiY.TakamoriY.WatanabeY.YamadaH. (2007). Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur. J. Neurosci. 25, 3489–3498
10.1111/j.1460-9568.2007.05617.x17610569)
TamuraY.KataokaY.CuiY.TakamoriY.WatanabeY.YamadaH. (2007). Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur. J. Neurosci. 25, 3489–3498
10.1111/j.1460-9568.2007.05617.x17610569, TamuraY.KataokaY.CuiY.TakamoriY.WatanabeY.YamadaH. (2007). Multi-directional differentiation of doublecortin- and NG2-immunopositive progenitor cells in the adult rat neocortex in vivo. Eur. J. Neurosci. 25, 3489–3498
10.1111/j.1460-9568.2007.05617.x17610569
(YamaguchiH.WangH. G. (2001). The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene
20, 7779–7786
10.1038/sj.onc.120498411753656)
YamaguchiH.WangH. G. (2001). The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene
20, 7779–7786
10.1038/sj.onc.120498411753656, YamaguchiH.WangH. G. (2001). The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene
20, 7779–7786
10.1038/sj.onc.120498411753656
(Alvarez-BuyllaA.Garcia-VerdugoJ. M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634
11826091)
Alvarez-BuyllaA.Garcia-VerdugoJ. M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634
11826091, Alvarez-BuyllaA.Garcia-VerdugoJ. M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634
11826091
Dengke
Ma,Karthikeyan
Ponnusamy,Mi-Ryoung
Song,G.
Ming,Hongjun
Song (2009)
(YamamotoS.YamamotoN.KitamuraT.NakamuraK.NakafukuM. (2001). Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp. Neurol. 172, 115–127
10.1006/exnr.2001.779811681845)
YamamotoS.YamamotoN.KitamuraT.NakamuraK.NakafukuM. (2001). Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp. Neurol. 172, 115–127
10.1006/exnr.2001.779811681845, YamamotoS.YamamotoN.KitamuraT.NakamuraK.NakafukuM. (2001). Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp. Neurol. 172, 115–127
10.1006/exnr.2001.779811681845
(EdgertonV. R.de LeonR. D.HarkemaS. J.HodgsonJ. A.LondonN.ReinkensmeyerD. J. (2001). Retraining the injured spinal cord. J. Physiol. 533, 15–22
10.1111/j.1469-7793.2001.0015b.x11351008)
(Barnabe-HeiderF.MillerF. D. (2003). Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160
12832539)
Barnabe-HeiderF.MillerF. D. (2003). Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160
12832539, Barnabe-HeiderF.MillerF. D. (2003). Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160
12832539
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.