Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Han, S. Ullrich, A. Kleinhofs, B. Jones, P. Hayes, D. Wesenberg (1997)
Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLsTheoretical and Applied Genetics, 95
Lab Anim., 30
Theor. Appl. Genet., 94
Theor. Appl. Genet., 106
(2005)
Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations
Genetics, 149
K. Edwards, J. Lynn, P. Gyula, F. Nagy, A. Millar (2005)
Natural Allelic Variation in the Temperature-Compensation Mechanisms of the Arabidopsis thaliana Circadian Clock Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY685131 and AY685132.Genetics, 170
Genetics, 170
L. Bentsink, K. Yuan, M. Koornneef, D. Vreugdenhil (2003)
The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variationTheoretical and Applied Genetics, 106
R. Doerge (2002)
Multifactorial genetics: Mapping and analysis of quantitative trait loci in experimental populationsNature Reviews Genetics, 3
R. Koumproglou, T. Wilkes, P. Townson, X. Wang, J. Beynon, H. Pooni, H. Newbury, M. Kearsey (2002)
STAIRS: a new genetic resource for functional genomic studies of Arabidopsis.The Plant journal : for cell and molecular biology, 31 3
M. Reymond, S. Svistoonoff, O. Loudet, L. Nussaume, T. Desnos (2006)
Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana.Plant, cell & environment, 29 1
I. Stylianou, Shirng-Wern Tsaih, K. Dipetrillo, N. Ishimori, Renhua Li, B. Paigen, G. Churchill (2006)
Complex Genetic Architecture Revealed by Analysis of High-Density Lipoprotein Cholesterol in Chromosome Substitution Strains and F2 CrossesGenetics, 174
AM Rae, EC Howell, M. Kearsey (1999)
More QTL for flowering time revealed by substitution lines in Brassica oleraceaHeredity, 83
T. Juenger, Ś. Sen, K. Stowe, E. Simms (2005)
Epistasis and genotype-environment interaction for quantitative trait loci affecting flowering time in Arabidopsis thalianaGenetica, 123
C. Alonso‐Blanco, M. Koornneef (2000)
Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics.Trends in plant science, 5 1
F. Han, J. Clancy, B. Jones, D. Wesenberg, A. Kleinhofs, S. Ullrich (2004)
Dissection of a malting quality QTL region on chromosome 1 (7H) of barleyMolecular Breeding, 14
J. Singer, Annie Hill, L. Burrage, Keith Olszens, Junghan Song, M. Justice, William O'Brien, D. Conti, J. Witte, E. Lander, J. Nadeau (2004)
Genetic Dissection of Complex Traits with Chromosome Substitution Strains of MiceScience, 304
K. Broman (2001)
Review of statistical methods for QTL mapping in experimental crosses.Lab animal, 30 7
T. Juenger, J. McKay, N. Hausmann, J. Keurentjes, Ś. Sen, K. Stowe, T. Dawson, E. Simms, J. Richards (2005)
Identification and characterization of QTL underlying whole‐plant physiology in Arabidopsis thaliana: δ13C, stomatal conductance and transpiration efficiencyPlant Cell and Environment, 28
M. Koornneef, C. Alonso‐Blanco, D. Vreugdenhil (2004)
Naturally occurring genetic variation in Arabidopsis thaliana.Annual review of plant biology, 55
Proc. Natl. Acad. Sci. USA, 96
Genetics, 141
M. Ungerer, S. Halldorsdottir, M. Purugganan, T. Mackay (2003)
Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana.Genetics, 165 1
C. Alonso‐Blanco, L. Bentsink, C. Hanhart, H. Vries, M. Koornneef (2003)
Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.Genetics, 164 2
J. Borevitz, M. Nordborg (2003)
The Impact of Genomics on the Study of Natural Variation in ArabidopsisPlant Physiology, 132
E. Fridman, F. Carrari, Yong-sheng Liu, A. Fernie, D. Zamir (2004)
Zooming In on a Quantitative Trait for Tomato Yield Using Interspecific IntrogressionsScience, 305
M. Tuinstra, G. Ejeta, P. Goldsbrough (1997)
Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait lociTheoretical and Applied Genetics, 95
K. Chase, F. Adler, K. Lark (1997)
Epistat : a computer program for identifying and testing interactions between pairs of quantitative trait lociTheoretical and Applied Genetics, 94
M. Blair, G. Iriarte, Steve Beebe (2006)
QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) crossTheoretical and Applied Genetics, 112
R. Jansen (2004)
Quantitative trait loci in inbred lines
J. Ooijen (1992)
Accuracy of mapping quantitative trait loci in autogamous speciesTheoretical and Applied Genetics, 84
Nat. Genet., 36
Mol. Breed., 14
C. Alonso‐Blanco, A. Peeters, M. Koornneef, C. Lister, C. Dean, N. Bosch, Jerina Pot, M. Kuiper (1998)
Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population.The Plant journal : for cell and molecular biology, 14 2
M. Korff, H. Wang, J. Léon, K. Pillen (2004)
Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donorTheoretical and Applied Genetics, 109
Theor. Appl. Genet., 95
Science, 305
Trends Plant Sci., 5
J. Maloof (2003)
Genomic approaches to analyzing natural variation in Arabidopsis thaliana.Current opinion in genetics & development, 13 6
A. Blanco, R. Simeone, A. Gadaleta (2006)
Detection of QTLs for grain protein content in durum wheatTheoretical and Applied Genetics, 112
J. Slate (2004)
INVITED REVIEW: Quantitative trait locus mapping in natural populations: progress, caveats and future directionsMolecular Ecology, 14
Kamal Swarup, C. Alonso‐Blanco, James Lynn, S. Michaels, R. Amasino, Maarten Koornneef, Andrew Millar (1999)
Natural allelic variation identifies new genes in the Arabidopsis circadian system.The Plant journal : for cell and molecular biology, 20 1
Shizhong Xu (2003)
Theoretical basis of the Beavis effect.Genetics, 165 4
O. Loudet, Virginie Gaudon, A. Trubuil, F. Daniel-vedele (2005)
Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred familyTheoretical and Applied Genetics, 110
Israel Ausín, C. Alonso‐Blanco, J. Jarillo, L. Ruiz-García, J. Martínez-Zapater (2004)
Regulation of flowering time by FVE, a retinoblastoma-associated proteinNature Genetics, 36
C. Alonso‐Blanco, H. Vries, C. Hanhart, M. Koornneef (1999)
Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana.Proceedings of the National Academy of Sciences of the United States of America, 96 8
C. Alonso‐Blanco, S. El-Assal, G. Coupland, M. Koornneef (1998)
Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana.Genetics, 149 2
Genetics, 164
M. Ungerer, S. Halldorsdottir, J. Modliszewski, T. Mackay, M. Purugganan (2002)
Quantitative trait loci for inflorescence development in Arabidopsis thaliana.Genetics, 160 3
Theor. Appl. Genet., 112
Y. Eshed, D. Zamir (1995)
An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics, 141 3
Nat. Rev. Genet., 3
J. Ooijen (2004)
Software for the mapping of quantitative trait loci in experimental populations
Antonio Monforte, S. Tanksley (2000)
Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery.Genome, 43 5
Plant Physiol., 132
Plant J., 14
M. Jeuken, P. Lindhout (2004)
The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasmTheoretical and Applied Genetics, 109
I. Paran, D. Zamir (2003)
Quantitative traits in plants: beyond the QTL.Trends in genetics : TIG, 19 6
Dong-Beom Yoon, K. Kang, H. Kim, Hong-guang Ju, S.-J. Kwon, J. Suh, O. Jeong, Sn Ahn (2006)
Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar HwaseongbyeoTheoretical and Applied Genetics, 112
J. Nadeau, J. Singer, A. Matin, E. Lander (2000)
Analysing complex genetic traits with chromosome substitution strainsNature Genetics, 24
S. Teng, J. Keurentjes, L. Bentsink, M. Koornneef, S. Smeekens (2005)
Sucrose-Specific Induction of Anthocyanin Biosynthesis in Arabidopsis Requires the MYB75/PAP1 Gene1Plant Physiology, 139
Theor. Appl. Genet., 112
In Arabidopsis recombinant inbred line (RIL) populations are widely used for quantitative trait locus (QTL) analyses. However, mapping analyses with this type of population can be limited because of the masking effects of major QTL and epistatic interactions of multiple QTL. An alternative type of immortal experimental population commonly used in plant species are sets of introgression lines. Here we introduce the development of a genomewide coverage near-isogenic line (NIL) population of Arabidopsis thaliana, by introgressing genomic regions from the Cape Verde Islands (Cvi) accession into the Landsberg erecta (Ler) genetic background. We have empirically compared the QTL mapping power of this new population with an already existing RIL population derived from the same parents. For that, we analyzed and mapped QTL affecting six developmental traits with different heritability. Overall, in the NIL population smaller-effect QTL than in the RIL population could be detected although the localization resolution was lower. Furthermore, we estimated the effect of population size and of the number of replicates on the detection power of QTL affecting the developmental traits. In general, population size is more important than the number of replicates to increase the mapping power of RILs, whereas for NILs several replicates are absolutely required. These analyses are expected to facilitate experimental design for QTL mapping using these two common types of segregating populations.
Genetics – Oxford University Press
Published: Feb 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.