Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Suppressing Li Metal Dendrites Through a Solid Li‐Ion Backup Layer

Suppressing Li Metal Dendrites Through a Solid Li‐Ion Backup Layer The growing demand for sustainable and off‐grid energy storage is reviving the attempts to use Li metal as the anode in the next generation of batteries. However, the use of Li anodes is hampered due to the growth of Li dendrites upon charging and discharging, which compromises the life and safety of the battery. Here, it is shown that lithiated multiwall carbon nanotubes (Li‐MWCNTs) act as a controlled Li diffusion interface that suppresses the growth of Li dendrites by regulating the Li+ ion flux during charge/discharge cycling at current densities between 2 and 4 mA cm−2. A full Li‐S cell is fabricated to showcase the versatility of the protected Li anode with the Li‐MWCNT interface, where the full cells could support pulse discharges at high currents and over 450 cycles at different rates with coulombic efficiencies close to 99.9%. This work indicates that carbon materials in lithiated forms can be an effective and simple approach to the stabilization of Li metal anodes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Wiley

Loading next page...
 
/lp/wiley/suppressing-li-metal-dendrites-through-a-solid-li-ion-backup-layer-0npRcLSYf4

References (54)

Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0935-9648
eISSN
1521-4095
DOI
10.1002/adma.201803869
Publisher site
See Article on Publisher Site

Abstract

The growing demand for sustainable and off‐grid energy storage is reviving the attempts to use Li metal as the anode in the next generation of batteries. However, the use of Li anodes is hampered due to the growth of Li dendrites upon charging and discharging, which compromises the life and safety of the battery. Here, it is shown that lithiated multiwall carbon nanotubes (Li‐MWCNTs) act as a controlled Li diffusion interface that suppresses the growth of Li dendrites by regulating the Li+ ion flux during charge/discharge cycling at current densities between 2 and 4 mA cm−2. A full Li‐S cell is fabricated to showcase the versatility of the protected Li anode with the Li‐MWCNT interface, where the full cells could support pulse discharges at high currents and over 450 cycles at different rates with coulombic efficiencies close to 99.9%. This work indicates that carbon materials in lithiated forms can be an effective and simple approach to the stabilization of Li metal anodes.

Journal

Advanced MaterialsWiley

Published: Dec 1, 2018

Keywords: ; ; ; ;

There are no references for this article.