Access the full text.
Sign up today, get DeepDyve free for 14 days.
Jeff Wang, F. Kato, N. Oyama-Manabe, Ruijiang Li, Yi Cui, K. Tha, H. Yamashita, K. Kudo, H. Shirato (2015)
Identifying Triple-Negative Breast Cancer Using Background Parenchymal Enhancement Heterogeneity on Dynamic Contrast-Enhanced MRI: A Pilot Radiomics StudyPLoS ONE, 10
R. Schapire, Y. Singer (1998)
Improved Boosting Algorithms Using Confidence-rated PredictionsMachine Learning, 37
D. Brat, R. Verhaak, K. Aldape, W. Yung, S. Salama, L. Cooper, Esther Rheinbay, C. Miller, M. Vitucci, O. Morozova, A. Robertson, H. Noushmehr, P. Laird, A. Cherniack, R. Akbani, J. Huse, G. Ciriello, L. Poisson, J. Barnholtz-Sloan, M. Berger, C. Brennan, R. Colen, H. Colman, A. Flanders, C. Giannini, Mia Grifford, A. Iavarone, R. Jain, I. Joseph, Jaegil Kim, K. Kasaian, T. Mikkelsen, Bradley Murray, B. O'neill, L. Pachter, D. Parsons, C. Sougnez, E. Sulman, S. Vandenberg, Erwin Meir, A. Deimling, Hailei Zhang, D. Crain, Kevin Lau, D. Mallery, S. Morris, J. Paulauskis, R. Penny, T. Shelton, M. Sherman, P. Yena, Aaron Black, Jay Bowen, Katie Dicostanzo, J. Gastier-Foster, K. Leraas, T. Lichtenberg, C. Pierson, N. Ramirez, Cynthia Taylor, Stephanie Weaver, L. Wise, E. Zmuda, Tanja Davidsen, John Demchok, G. Eley, M. Ferguson, C. Hutter, Kenna Shaw, B. Ozenberger, Margi Sheth, H. Sofia, R. Tarnuzzer, Zhining Wang, Liming Yang, J. Zenklusen, Brenda Ayala, J. Baboud, Sudha Chudamani, M. Jensen, Jia Liu, T. Pihl, R. Raman, Yunhu Wan, Ye Wu, Adrian Ally, J. Auman, M. Balasundaram, S. Balu, S. Baylin, R. Beroukhim, M. Bootwalla, R. Bowlby, C. Bristow, Denise Brooks, Y. Butterfield, R. Carlsen, S. Carter, L. Chin, Andy Chu, E. Chuah, K. Cibulskis, A. Clarke, Simon Coetzee, Noreen Dhalla, T. Fennell, Sheila Fisher, S. Gabriel, G. Getz, R. Gibbs, R. Guin, Angela Hadjipanayis, D. Hayes, T. Hinoue, K. Hoadley, R. Holt, A. Hoyle, S. Jefferys, Steven Jones, Corbin Jones, R. Kucherlapati, Phillip Lai, E. Lander, Semin Lee, Lee Lichtenstein, Yussanne Ma, D. Maglinte, Harshad Mahadeshwar, M. Marra, Michael Mayo, S. Meng, M. Meyerson, P. Mieczkowski, Richard Moore, Lisle Mose, A. Mungall, A. Pantazi, Michael Parfenov, P. Park, J. Parker, C. Perou, A. Protopopov, X. Ren, J. Roach, Thaís Sabedot, J. Schein, S. Schumacher, J. Seidman, S. Seth, Hui Shen, J. Simons, Payal Sipahimalani, Matthew Soloway, Xingzhi Song, Huandong Sun, B. Tabak, Angela Tam, Donghui Tan, Jiabin Tang, N. Thiessen, T. Triche, D. Berg, Umadevi Veluvolu, S. Waring, D. Weisenberger, M. Wilkerson, Tina Wong, Junyuan Wu, Liu Xi, A. Xu, Lixing Yang, Travis Zack, Jianhua Zhang, B. Aksoy, H. Arachchi, C. Benz, Brady Bernard, Daniel Carlin, Juok Cho, D. Dicara, S. Frazer, G. Fuller, Jianjiong Gao, N. Gehlenborg, D. Haussler, David Heiman, L. Iype, A. Jacobsen, Z. Ju, Sol Katzman, Hoon Kim, T. Knijnenburg, R. Kreisberg, M. Lawrence, William Lee, Kalle Leinonen, Pei Lin, Shiyun Ling, Wenbin Liu, Yingchun Liu, Yuexin Liu, Yiling Lu, G. Mills, S. Ng, M. Noble, Evan Paull, A. Rao, Sheila Reynolds, G. Saksena, Zachary Sanborn, C. Sander, N. Schultz, Y. Şenbabaoğlu, R. Shen, I. Shmulevich, Rileen Sinha, Josh Stuart, S. Sumer, Yichao Sun, Natalie Tasman, B. Taylor, Douglas Voet, Nils Weinhold, J. Weinstein, Da Yang, K. Yoshihara, Siyuan Zheng, Wei Zhang, L. Zou, T. Abel, S. Sadeghi, M. Cohen, J. Eschbacher, E. Hattab, A. Raghunathan, M. Schniederjan, Dina Aziz, G. Barnett, Wendi Barrett, D. Bigner, L. Boice, C. Brewer, C. Calatozzolo, B. Campos, C. Carlotti, T. Chan, L. Cuppini, Erin Curley, S. Cuzzubbo, K. Devine, F. DiMeco, R. Duell, J. Elder, Ashley Fehrenbach, G. Finocchiaro, W. Friedman, J. Fulop, J. Gardner, Beth Hermes, C. Herold‐Mende, C. Jungk, A. Kendler, N. Lehman, E. Lipp, Ouida Liu, Randy Mandt, Mary McGraw, R. McLendon, C. McPherson, L. Neder, P. Nguyen, Ardene Noss, R. Nunziata, Q. Ostrom, C. Palmer, A. Perin, B. Pollo, A. Potapov, O. Potapova, W. Rathmell, D. Rotin, L. Scarpace, C. Schilero, Kelly Senecal, K. Shimmel, V. Shurkhay, Suzanne Sifri, Rosy Singh, A. Sloan, Kathy Smolenski, S. Staugaitis, Ruth Steele, L. Thorne, D. Tirapelli, A. Unterberg, Mahitha Vallurupalli, Yun Wang, R. Warnick, Felicia Williams, Yingli Wolinsky, Sue Bell, Mara Rosenberg, C. Stewart, F. Huang, J. Grimsby, Amie Radenbaugh, Jianan Zhang (2015)
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.The New England journal of medicine, 372 26
K Yamashita, A Hiwatashi, O Togao (2016)
MR Imaging-Based Analysis of Glioblastoma Multiforme: Estimation of IDH1 Mutation StatusAJNR Am J Neuroradiol
R. Wechsler-Reya, M. Scott (2001)
The developmental biology of brain tumors.Annual review of neuroscience, 24
R. Maglietta, N. Amoroso, M. Boccardi, S. Bruno, A. Chincarini, G. Frisoni, P. Inglese, A. Redolfi, S. Tangaro, A. Tateo, R. Bellotti (2015)
Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithmPattern Analysis and Applications, 19
S. Venneti, J. Huse (2015)
The Evolving Molecular Genetics of Low-grade GliomaAdvances In Anatomic Pathology, 22
P. Wen, S. Kesari (2008)
Malignant gliomas in adults.The New England journal of medicine, 359 5
Wei-miao Wu, C. Parmar, P. Grossmann, John Quackenbush, P. Lambin, J. Bussink, R. Mak, H. Aerts (2016)
Exploratory Study to Identify Radiomics Classifiers for Lung Cancer HistologyFrontiers in Oncology, 6
I. Nouretdinov, S. Costafreda, A. Gammerman, A. Chervonenkis, V. Vovk, V. Vapnik, C. Fu (2011)
Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depressionNeuroImage, 56
G. Collewet, M. Strzelecki, F. Mariette (2004)
Influence of MRI acquisition protocols and image intensity normalization methods on texture classification.Magnetic resonance imaging, 22 1
W. Pope, R. Prins, M. Thomas, R. Nagarajan, K. Yen, M. Bittinger, N. Salamon, A. Chou, W. Yong, H. Soto, N. Wilson, E. Driggers, H. Jang, Shinsan Su, D. Schenkein, A. Lai, T. Cloughesy, H. Kornblum, Hong Wu, V. Fantin, L. Liau (2012)
Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopyJournal of Neuro-Oncology, 107
YY Wang, T Zhang, SW Li (2015)
Mapping p53 mutations in low-grade glioma: a voxel-based neuroimaging analysisAJNR Am J Neuroradiol
Yin-yan Wang, Tong-mei Zhang, Shouwei Li, Xing Fan, Jun Ma, Lu-Ning Wang, Taiyi Jiang (2015)
Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel‐based radiographic study of 146 low‐grade gliomasEuropean Journal of Neurology, 22
Qun Wang, Hui Zhang, Jia-shu Zhang, Chen Wu, Weijie Zhu, Fang-ye Li, Xiaolei Chen, Bainan Xu (2016)
The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysisEuropean Radiology, 26
A. Cameron, F. Khalvati, M. Haider, A. Wong (2016)
MAPS: A Quantitative Radiomics Approach for Prostate Cancer DetectionIEEE Transactions on Biomedical Engineering, 63
Corinna Cortes, V. Vapnik (1995)
Support-Vector NetworksMachine Learning, 20
K. Yamashita, A. Hiwatashi, O. Togao, K. Kikuchi, R. Hatae, K. Yoshimoto, M. Mizoguchi, S. Suzuki, T. Yoshiura, H. Honda (2016)
MR Imaging–Based Analysis of Glioblastoma Multiforme: Estimation of IDH1 Mutation StatusAmerican Journal of Neuroradiology, 37
G. Lombardi, G. Corona, L. Bellu, A. Puppa, A. Pambuku, P. Fiduccia, R. Bertorelle, M. Gardiman, D. d'Avella, G. Toffoli, V. Zagonel (2015)
Diagnostic value of plasma and urinary 2-hydroxyglutarate to identify patients with isocitrate dehydrogenase-mutated glioma.The oncologist, 20 5
Hanchuan Peng, Fuhui Long, C. Ding (2003)
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancyIEEE Transactions on Pattern Analysis and Machine Intelligence, 27
Seunghyun Lee, S. Choi, I. Ryoo, Tae Yoon, T. Kim, Se-Hoon Lee, Chul-Kee Park, Ji-hoon Kim, C. Sohn, Sung-Hye Park, I. Kim (2014)
Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imagingJournal of Neuro-Oncology, 121
O. Andronesi, O. Rapalino, E. Gerstner, A. Chi, Tracy Batchelor, Dan Cahill, A. Sorensen, Bruce Rosen (2013)
Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate.The Journal of clinical investigation, 123 9
M. Weller, S. Pfister, W. Wick, M. Hegi, G. Reifenberger, R. Stupp (2013)
Molecular neuro-oncology in clinical practice: a new horizon.The Lancet. Oncology, 14 9
J. Beiko, D. Suki, K. Hess, B. Fox, Vincent Cheung, Matthew Cabral, N. Shonka, M. Gilbert, R. Sawaya, S. Prabhu, J. Weinberg, F. Lang, K. Aldape, E. Sulman, G. Rao, I. McCutcheon, D. Cahill (2014)
IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection.Neuro-oncology, 16 1
the human brain: International Consortium for Brain Mapping (ICBM)
M. Fuente, R. Young, Jennifer Rubel, M. Rosenblum, J. Tisnado, S. Briggs, J. Arevalo-Perez, J. Cross, Carl Campos, K. Straley, Dongwei Zhu, Chuanhui Dong, Alissa Thomas, A. Omuro, C. Nolan, E. Pentsova, T. Kaley, J. Oh, R. Noeske, E. Maher, Changho Choi, P. Gutin, A. Holodny, K. Yen, L. Deangelis, I. Mellinghoff, S. Thakur (2016)
Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma.Neuro-oncology, 18 2
N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, M. Joliot (2002)
Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject BrainNeuroImage, 15
O. Togao, A. Hiwatashi, K. Yamashita, K. Kikuchi, J. Keupp, K. Yoshimoto, Daisuke Kuga, M. Yoneyama, Satoshi Suzuki, T. Iwaki, Masaya Takahashi, K. Iihara, H. Honda (2017)
Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imagingEuropean Radiology, 27
Ying Wang, T. Zhang, Shouwei Li, Tianyi Qian, Xing Fan, Xiaoxia Peng, Jun Ma, Liya Wang, T. Jiang (2015)
Mapping p53 Mutations in Low-Grade Glioma: A Voxel-Based Neuroimaging AnalysisAmerican Journal of Neuroradiology, 36
H. Aerts, E. Velazquez, R. Leijenaar, C. Parmar, P. Grossmann, Sara Cavalho, J. Bussink, R. Monshouwer, Benjamin Haibe-Kains, D. Rietveld, F. Hoebers, M. Rietbergen, C. Leemans, A. Dekker, John Quackenbush, R. Gillies, P. Lambin (2014)
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature Communications, 5
R. Haralick, K. Shanmugam, I. Dinstein (1973)
Textural Features for Image ClassificationIEEE Trans. Syst. Man Cybern., 3
J Mazziotta, A Toga, A Evans (2001)
A probabilistic atlas and reference system for the human brain. International Consortium for Brain Mapping (ICBM)Philos Trans R Soc Lond B Biol Sci
Sérgio Pereira, Adriano Pinto, Victor Alves, Carlos Silva (2016)
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI ImagesIEEE Transactions on Medical Imaging, 35
R. Gillies, Paul Kinahan, H. Hricak (2015)
Radiomics: Images Are More than Pictures, They Are DataRadiology, 278
A. Chan, Yu Yao, Zhenyu Zhang, N. Chung, Joseph Liu, K. Li, Zhifeng Shi, D. Chan, W. Poon, Liangfu Zhou, H. Ng (2015)
TERT promoter mutations contribute to subset prognostication of lower-grade gliomasModern Pathology, 28
C. Parmar, P. Grossmann, D. Rietveld, M. Rietbergen, P. Lambin, H. Aerts (2015)
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck CancerFrontiers in Oncology, 5
M. Vallières, Carolyn Freeman, S. Skamene, I. Naqa, I. Naqa (2015)
A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremitiesPhysics in Medicine & Biology, 60
B. Ellingson, T. Cloughesy, W. Pope, T. Zaw, Heidi Phillips, S. Lalezari, P. Nghiemphu, Hassana Ibrahim, K. Naeini, R. Harris, A. Lai (2012)
Anatomic localization of O6-methylguanine DNA methyltransferase (MGMT) promoter methylated and unmethylated tumors: A radiographic study in 358 de novo human glioblastomasNeuroImage, 59
K. Deb, S. Agrawal, Amrit Pratap, T. Meyarivan (2002)
A fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans. Evol. Comput., 6
Eur Radiol (2017) 27:3509–3522 DOI 10.1007/s00330-016-4653-3 MAGNETIC RESONANCE Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma 1,2 3 1 1 1 1 Jinhua Yu & Zhifeng Shi & Yuxi Lian & Zeju Li & Tongtong Liu & Yuan Gao & 1 3 3 Yuanyuan Wang & Liang Chen & Ying Mao Received: 12 July 2016 /Revised: 19 October 2016 /Accepted: 21 October 2016 /Published online: 21 December 2016 European Society of Radiology 2016 Abstract 0.74. Area under the receiver operating characteristic curve Objective The status of isocitrate dehydrogenase 1 (IDH1) is reached 0.86. Further validation on the independent cohort highly correlated with the development, treatment and prog- of 30 patients produced similar results. nosis of glioma. We explored a noninvasive method to reveal Conclusions Radiomics is a potentially useful approach for IDH1 status by using a quantitative radiomics approach for estimating IDH1 mutation status noninvasively using conven- grade II glioma. tional T2-FLAIR MRI images. The estimation accuracy could Methods A primary cohort consisting of 110 patients patho- potentially be improved by using multiple imaging modalities. logically diagnosed with grade II glioma was retrospectively Key Points studied. The radiomics method developed in this paper
European Radiology – Springer Journals
Published: Dec 21, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.