Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Hassoun, S. Panero, Patrice Simon, P. Taberna, B. Scrosati (2007)
High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion BatteriesAdvanced Materials, 19
P. Taberna, S. Mitra, P. Poizot, P. Simon, J. Tarascon (2006)
High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applicationsNature Materials, 5
K. Ueno, Y. Sano, A. Inaba, Masashi Kondoh, M. Watanabe (2010)
Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure.The journal of physical chemistry. B, 114 41
M. Yoshio, R. Brodd, A. Kozawa (2009)
Lithium-ion batteries
B. Scrosati, J. Garche (2010)
Lithium batteries: Status, prospects and futureJournal of Power Sources, 195
R. Bhattacharyya, B. Key, Hailong Chen, A. Best, A. Hollenkamp, C. Grey (2010)
In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries.Nature materials, 9 6
Jian‐mei Lu, Feng Yan, J. Texter (2009)
Advanced applications of ionic liquids in polymer scienceProgress in Polymer Science, 34
S. Duluard, J. Grondin, J. Bruneel, I. Pianet, A. Grélard, G. Campet, M. Delville, J. Lassègues (2008)
Lithium solvation and diffusion in the 1‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquidJournal of Raman Spectroscopy, 39
V. Trappe, V. Trappe, V. Prasad, L. Cipelletti, L. Cipelletti, P. Segre, P. Segre, D. Weitz (2001)
Jamming phase diagram for attractive particlesNature, 411
A. Lewandowski, A. Swiderska-Mocek (2009)
Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studiesJournal of Power Sources, 194
P. Webb, Thulani Kunene, D. Cole-Hamilton (2005)
Continuous flow homogeneous hydroformylation of alkenes using supercritical fluidsGreen Chemistry, 7
G. Appetecchi, G. Dautzenberg, B. Scrosati (1996)
A New Class of Advanced Polymer Electrolytes and Their Relevance in Plastic‐like, Rechargeable Lithium BatteriesJournal of The Electrochemical Society, 143
J. Schaefer, Surya Moganty, Dennis Yanga, L. Archer (2011)
Nanoporous hybrid electrolytesJournal of Materials Chemistry, 21
J. Tarascon, M. Armand (2001)
Issues and challenges facing rechargeable lithium batteriesNature, 414
Yuria Saito, T. Umecky, J. Niwa, T. Sakai, Seiji Maeda (2007)
Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent.The journal of physical chemistry. B, 111 40
J. Schaefer, Surya Moganty, L. Archer (2010)
Nanoscale Organic Hybrid ElectrolytesAdvanced Materials, 22
Peng Wang, S. Zakeeruddin, P. Comte, I. Exnar, M. Grätzel (2003)
Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells.Journal of the American Chemical Society, 125 5
J. Yamaki, S. Tobishima, Katsuya Hayashi, Keiichi Saito, Y. Nemoto, M. Arakawa (1997)
A consideration of the morphology of electrochemically deposited lithium in an organic electrolyteJournal of Power Sources, 74
P. Bruce, J. Evans, C. Vincent (1988)
Conductivity and transference number measurements on polymer electrolytesSolid State Ionics
K. Kang, Y. Meng, J. Bréger, C. Grey, G. Ceder (2006)
Electrodes with High Power and High Capacity for Rechargeable Lithium BatteriesScience, 311
Surya Moganty, N. Jayaprakash, Jennifer Nugent, Jingguo Shen, L. Archer (2010)
Ionic-liquid-tethered nanoparticles: hybrid electrolytes.Angewandte Chemie, 49 48
R. Morris (2009)
Ionothermal synthesis--ionic liquids as functional solvents in the preparation of crystalline materials.Chemical communications, 21
Rosamaría Fong, U. Sacken, J. Dahn (1990)
Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical CellsJournal of The Electrochemical Society, 137
J. Chazalviel (1990)
Electrochemical aspects of the generation of ramified metallic electrodeposits.Physical review. A, Atomic, molecular, and optical physics, 42 12
G. Lane, P. Bayley, B. Clare, A. Best, D. Macfarlane, M. Forsyth, A. Hollenkamp (2010)
Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imideJournal of Physical Chemistry C, 114
A. Ispas, B. Adolphi, A. Bund, F. Endres (2010)
On the electrodeposition of tantalum from three different ionic liquids with the bis(trifluoromethyl sulfonyl) amide anion.Physical chemistry chemical physics : PCCP, 12 8
K. Ueno, K. Hata, T. Katakabe, Masashi Kondoh, M. Watanabe (2008)
Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure.The journal of physical chemistry. B, 112 30
M. Armand, F. Endres, D. Macfarlane, H. Ohno, B. Scrosati (2009)
Ionic-liquid materials for the electrochemical challenges of the future.Nature materials, 8 8
Feng Zhou, Yongmin Liang, Wei-min Liu (2009)
Ionic liquid lubricants: designed chemistry for engineering applications.Chemical Society reviews, 38 9
D. Xiao, Larry Hines, M. Holtz, K. Song, R. Bartsch, E. Quitevis (2010)
Effect of cation symmetry on the low-frequency spectra of imidazolium ionic liquids: OKE and Raman spectroscopic measurements and DFT calculationsChemical Physics Letters, 497
Jae‐Kwang Kim, A. Matic, Jou‐Hyeon Ahn, P. Jacobsson (2010)
An imidazolium based ionic liquid electrolyte for lithium batteriesJournal of Power Sources, 195
M. Rosso, T. Gobron, C. Brissot, J. Chazalviel, S. Lascaud (2001)
Onset of dendritic growth in lithium/polymer cellsJournal of Power Sources, 97
K. Kodama, R. Tsuda, Kazuyuki Niitsuma, T. Tamura, T. Ueki, H. Kokubo, M. Watanabe (2011)
Structural effects of polyethers and ionic liquids in their binary mixtures on lower critical solution temperature liquid-liquid phase separationPolymer Journal, 43
J. Kerr, S. Sloop, Gao Liu, Yongbong Han, Jun Hou, Shanger Wang (2002)
From molecular models to system analysis for lithium battery electrolytesJournal of Power Sources, 110
D. Linden (2001)
Handbook Of Batteries
R. Baltus, B. Culbertson, S. Dai, H. Luo, D. DePaoli (2004)
Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal MicrobalanceJournal of Physical Chemistry B, 108
Praveen Agarwal, Samanvaya Srivastava, L. Archer (2011)
Thermal jamming of a colloidal glass.Physical review letters, 107 26
Till Frömling, Miriam Kunze, M. Schönhoff, Jörg Sundermeyer, Bernhard Roling (2008)
Enhanced lithium transference numbers in ionic liquid electrolytes.The journal of physical chemistry. B, 112 41
A. Bhattacharyya, J. Maier (2004)
Second Phase Effects on the Conductivity of Non‐Aqueous Salt Solutions: “Soggy Sand Electrolytes”Advanced Materials, 16
Praveen Agarwal, Haibo Qi, L. Archer (2010)
The ages in a self-suspended nanoparticle liquid.Nano letters, 10 1
K. Ueno, A. Inaba, T. Ueki, Masashi Kondoh, M. Watanabe (2010)
Thermosensitive, soft glassy and structural colored colloidal array in ionic liquid: colloidal glass to gel transition.Langmuir : the ACS journal of surfaces and colloids, 26 23
S. Long, P. Howlett, D. Macfarlane, M. Forsyth (2006)
Fast ion conduction in an acid doped pentaglycerine plastic crystalSolid State Ionics, 177
Yoshio Idota, T. Kubota, Akihiro Matsufuji, Yukio Maekawa, T. Miyasaka (1997)
Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage MaterialScience, 276
S. Saito, Yuichi Katoh, H. Kokubo, M. Watanabe, S. Maruo (2009)
Development of a soft actuator using a photocurable ionic gelJournal of Micromechanics and Microengineering, 19
Peter Sollich, F. Lequeux, P. Hébraud, M. Cates (1996)
Rheology of Soft Glassy MaterialsPhysical Review Letters, 78
We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400 °C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes.
Journal of Materials Chemistry – Royal Society of Chemistry
Published: Feb 7, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.