Access the full text.
Sign up today, get DeepDyve free for 14 days.
Christian Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, Scott Reed, Dragomir Anguelov, D. Erhan, Vincent Vanhoucke, Andrew Rabinovich (2014)
Going deeper with convolutions2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Haibo He, E. Garcia (2009)
Learning from Imbalanced DataIEEE Transactions on Knowledge and Data Engineering, 21
J. Anitha, J. Peter (2015)
Mammogram segmentation using maximal cell strength updation in cellular automataMedical & Biological Engineering & Computing, 53
Ignacio Heredia (2017)
Large-Scale Plant Classification with Deep Neural NetworksProceedings of the Computing Frontiers Conference
G. Litjens, Thijs Kooi, B. Bejnordi, A. Setio, F. Ciompi, Mohsen Ghafoorian, J. Laak, B. Ginneken, C. Sánchez (2017)
A survey on deep learning in medical image analysisMedical image analysis, 42
François Chollet (2016)
Xception: Deep Learning with Depthwise Separable Convolutions2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Nitish Srivastava, Geoffrey Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov (2014)
Dropout: a simple way to prevent neural networks from overfittingJ. Mach. Learn. Res., 15
Lingyun Cai, Xin Wang, Yuanyuan Wang, Yi Guo, Jinhua Yu, Yi Wang (2015)
Robust phase-based texture descriptor for classification of breast ultrasound imagesBioMedical Engineering OnLine, 14
J. Yosinski, J. Clune, Yoshua Bengio, Hod Lipson (2014)
How transferable are features in deep neural networks?ArXiv, abs/1411.1792
H. Aerts, E. Velazquez, R. Leijenaar, C. Parmar, P. Grossmann, S. Carvalho, J. Bussink, R. Monshouwer, B. Haibe-Kains, D. Rietveld, F. Hoebers, M. Rietbergen, C. Leemans, A. Dekker, John Quackenbush, R. Gillies, P. Lambin (2014)
Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature Communications, 5
Guangyi Chen, W. Xie (2007)
Pattern recognition with SVM and dual-tree complex waveletsImage Vis. Comput., 25
Radhika Menon, Poulami Raha, S. Kothari, S. Chakraborty, I. Chakrabarti, Rezaul Karim (2015)
Automated detection and classification of mass from breast ultrasound images2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)
K. Drukker, M. Giger, K. Horsch, M. Kupinski, C. Vyborny, E. Mendelson (2002)
Computerized lesion detection on breast ultrasound.Medical physics, 29 7
M. Elter, R. Schulz-Wendtland, T. Wittenberg (2007)
The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process.Medical physics, 34 11
Heng-Da Cheng, J. Shan, Wen Ju, Yanhui Guo, Ling Zhang (2010)
Automated breast cancer detection and classification using ultrasound images: A surveyPattern Recognit., 43
M. Mustra, M. Grgic, R. Rangayyan (2015)
Review of recent advances in segmentation of the breast boundary and the pectoral muscle in mammogramsMedical & Biological Engineering & Computing, 54
A. Takemura, A. Shimizu, K. Hamamoto (2010)
Discrimination of Breast Tumors in Ultrasonic Images Using an Ensemble Classifier Based on the AdaBoost Algorithm With Feature SelectionIEEE Transactions on Medical Imaging, 29
B. Singh, K. Verma, A. Thoke (2015)
A Dual Feature Selection Approach for Classification of Breast Tumors in Ultrasound Images Using ANN and SVMArtificial Intelligent Systems and Machine Learning, 7
Sinno Pan, Qiang Yang (2010)
A Survey on Transfer LearningIEEE Transactions on Knowledge and Data Engineering, 22
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Z. Wojna (2015)
Rethinking the Inception Architecture for Computer Vision2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Olga Russakovsky, Jia Deng, Hao Su, J. Krause, S. Satheesh, Sean Ma, Zhiheng Huang, A. Karpathy, A. Khosla, Michael Bernstein, A. Berg, Li Fei-Fei (2014)
ImageNet Large Scale Visual Recognition ChallengeInternational Journal of Computer Vision, 115
H. Aerts, E. Velazquez, R. Leijenaar, C. Parmar, P. Grossmann, Sara Cavalho, J. Bussink, R. Monshouwer, Benjamin Haibe-Kains, D. Rietveld, F. Hoebers, M. Rietbergen, C. Leemans, A. Dekker, John Quackenbush, R. Gillies, P. Lambin (2014)
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature Communications, 5
Kaiming He, X. Zhang, Shaoqing Ren, Jian Sun (2015)
Deep Residual Learning for Image Recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Sergey Ioffe, Christian Szegedy (2015)
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate ShiftArXiv, abs/1502.03167
Benjamin Huynh, K. Drukker, M. Giger (2016)
MO-DE-207B-06: Computer-Aided Diagnosis of Breast Ultrasound Images Using Transfer Learning From Deep Convolutional Neural Networks.Medical physics, 43 6
BioMed Research International – Unpaywall
Published: Jun 21, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.