Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Matsunaga, Y. Okamura, Yorikane Fukuda, A. Wahyudi, Yaeko Murase, H. Takeyama (2005)
Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1.DNA research : an international journal for rapid publication of reports on genes and genomes, 12 3
Q. Vuong, J. Berret, J. Fresnais, Y. Gossuin, Olivier Sandre (2012)
A Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2‐Contrast AgentsAdvanced Healthcare Materials, 1
P. Renshaw, C. Owen, A. McLaughlin, T. Frey, J. Leigh (1986)
Ferromagnetic contrast agents: A new approachMagnetic Resonance in Medicine, 3
N. Levinson, E. Bolte, C. Miller, S. Corcelli, S. Boxer (2011)
Phosphate vibrations probe local electric fields and hydration in biomolecules.Journal of the American Chemical Society, 133 34
Julie Bolley, E. Guénin, N. Lièvre, M. Lecouvey, M. Soussan, Y. Lalatonne, L. Motte (2013)
Carbodiimide versus click chemistry for nanoparticle surface functionalization: a comparative study for the elaboration of multimodal superparamagnetic nanoparticles targeting αvβ3 integrins.Langmuir : the ACS journal of surfaces and colloids, 29 47
N. Ginet, Romain Pardoux, Géraldine Adryanczyk, Daniel Garcia, C. Brutesco, D. Pignol (2011)
Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial MagnetosomesPLoS ONE, 6
A. Hartung, Marcus-René Lisy, K. Herrmann, I. Hilger, D. Schüler, Claus Lang, M. Bellemann, W. Kaiser, J. Reichenbach (2007)
Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imagingJournal of Magnetism and Magnetic Materials, 311
R. Weissleder, M. Pittet (2008)
Imaging in the era of molecular oncologyNature, 452
A. Barth, C. Zscherp (2002)
What vibrations tell about proteinsQuarterly Reviews of Biophysics, 35
B. Moskowitz, R. Frankel, D. Bazylinski (1993)
Rock magnetic criteria for the detection of biogenic magnetiteEarth and Planetary Science Letters, 120
S. Mann, R. Frankel, R. Blakemore (1984)
Structure, morphology and crystal growth of bacterial magnetiteNature, 310
N. Lee, Y. Choi, Youjin Lee, Mihyun Park, W. Moon, S. Choi, T. Hyeon (2012)
Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r₂ relaxivity for highly sensitive in vivo MRI of tumors.Nano letters, 12 6
E. Alphandéry, I. Chebbi, F. Guyot, Mickaël Durand-Dubief (2013)
Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A reviewInternational Journal of Hyperthermia, 29
M. Dias, P. Lauterbur (1986)
Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleenMagnetic Resonance in Medicine, 3
Claus Lang, D. Schüler, D. Faivre (2007)
Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes.Macromolecular bioscience, 7 2
D. Bazylinski, T. Williams, C. Lefevre, Denis Trubitsyn, Jiasong Fang, T. Beveridge, B. Moskowitz, Bruce Ward, Sabrina Schübbe, Bradley Dubbels, B. Simpson (2013)
Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh.International journal of systematic and evolutionary microbiology, 63 Pt 5
Alejandro Frangi, W. Niessen, K. Vincken, M. Viergever (1998)
Muliscale Vessel Enhancement Filtering
I. Kolinko, Anna Lohße, Sarah Borg, Oliver Raschdorf, C. Jogler, Q. Tu, M. Pósfai, É. Tompa, J. Plitzko, A. Brachmann, G. Wanner, R. Müller, Youming Zhang, D. Schüler (2014)
Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters.Nature nanotechnology, 9 3
C. Lefevre, N. Menguy, F. Abreu, U. Lins, M. Pósfai, T. Prozorov, D. Pignol, R. Frankel, D. Bazylinski (2011)
A Cultured Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-Reducing BacteriaScience, 334
A. Kamnev, L. Antonyuk, L. Matora, O. Serebrennikova, M. Sumaroka, M. Colina, M. Renou-Gonnord, V. Ignatov (1999)
Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilenseJournal of Molecular Structure, 480
Benjamin Marty, B. Larrat, Maxime Landeghem, C. Robic, Philippe Robert, Marc Port, Denis Bihan, M. Pernot, M. Tanter, F. Lethimonnier, S. Mériaux (2012)
Dynamic Study of Blood–Brain Barrier Closure after its Disruption using Ultrasound: A Quantitative AnalysisJournal of Cerebral Blood Flow & Metabolism, 32
Bradley Dubbels, A. DiSpirito, J. Morton, J. Semrau, J. Neto, D. Bazylinski (2004)
Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1.Microbiology, 150 Pt 9
T. Matsuda, J. Endo, N. Osakabe, A. Tonomura, T. Arii (1983)
Morphology and structure of biogenic magnetite particlesNature, 302
Robby Petros, J. Desimone (2010)
Strategies in the design of nanoparticles for therapeutic applicationsNature Reviews Drug Discovery, 9
Chang Kim, G. Tonga, David Solfiell, V. Rotello (2013)
Inorganic nanosystems for therapeutic delivery: status and prospects.Advanced drug delivery reviews, 65 1
R. Dunin‐Borkowski, M. McCartney, R. Frankel, D. Bazylinski, M. Pósfai, P. Buseck (1998)
Magnetic microstructure of magnetotactic bacteria by electron holographyScience, 282 5395
D. Bazylinski, R. Frankel (2004)
Magnetosome formation in prokaryotesNature Reviews Microbiology, 2
C. Corot, P. Robert, J. Idee, M. Port (2006)
Recent advances in iron oxide nanocrystal technology for medical imaging.Advanced drug delivery reviews, 58 14
Jianbo Sun, T. Tang, J. Duan, P. Xu, Ziliang Wang, Yangde Zhang, Long Wu, Ying Li (2010)
Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicityNanotoxicology, 4
C. Lefevre, D. Bazylinski (2013)
Ecology, Diversity, and Evolution of Magnetotactic BacteriaMicrobiology and Molecular Biology Reviews, 77
D. Bazylinski, R. Frankel, H. Jannasch (1988)
Anaerobic magnetite production by a marine, magnetotactic bacteriumNature, 334
A. Komeili (2012)
Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria.FEMS microbiology reviews, 36 1
R. Frankel, R. Blakemore (1980)
Navigational Compass in Magnetic BacteriaJournal of Magnetism and Magnetic Materials, 15
Eric Smolensky, Hee-Yun Park, Yue-Min Zhou, Gabriele Rolla, M. Marjańska, M. Botta, V. Pierre (2013)
Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents.Journal of materials chemistry. B, 1 22
C. Jung (1995)
Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil.Magnetic resonance imaging, 13 5
A. Muxworthy, W. Williams (2009)
Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystalsJournal of The Royal Society Interface, 6
The fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T2‐contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range. Purified magnetosomes are water‐dispersible and stable within physiological conditions and exhibit at 17.2 T a transverse relaxivity r2 four times higher than commercial ferumoxide. The subsequent gain in sensitivity by T2*‐weighted imaging at 17.2 T of the mouse brain vasculature is evidenced in vivo after tail vein injection of magnetosomes representing a low dose of iron (20 μmoliron kg−1), whereas no such phenomenon with the same dose of ferumoxide is observed. Preclinical studies of human pathologies in animal models will benefit from the combination of high magnetic field MRI with sensitive, low dose, easy‐to‐produce biocompatible contrast agents derived from bacterial magnetosomes.
Advanced Healthcare Materials – Wiley
Published: May 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.