Access the full text.
Sign up today, get DeepDyve free for 14 days.
Shaogui Guo, Jianguo Zhang, Honghe Sun, J. Salse, W. Lucas, Haiying Zhang, Yi Zheng, Linyong Mao, Yi Ren, Zhiwen Wang, Jiumeng Min, Xiaosen Guo, Florent Murat, B. Ham, Zhaoliang Zhang, Shan Gao, Mingyun Huang, Yimin Xu, S. Zhong, A. Bombarely, L. Mueller, Hong Zhao, Hongju He, Yan Zhang, Zhonghua Zhang, Sanwen Huang, Tao Tan, Erli Pang, Kui Lin, Qun Hu, H. Kuang, Peixiang Ni, Bo Wang, Jingan Liu, Qinghe Kou, Wenju Hou, X. Zou, Jiao Jiang, G. Gong, K. Klee, H. Schoof, Ying Huang, Xuesong Hu, S. Dong, Dequan Liang, Juan Wang, Kui-Hua Wu, Yang Xia, Xiang Zhao, Zequn Zheng, M. Xing, Xinming Liang, Bangqin Huang, T. Lv, Junyi Wang, Ye Yin, H. Yi, Ruiqiang Li, Ming-zhu Wu, A. Levi, Xingping Zhang, J. Giovannoni, Jun Wang, Yunfu Li, Z. Fei, Yong Xu (2012)
The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessionsNature Genetics, 45
Robert Edgar (2004)
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic acids research, 32 5
Patrizia Sebastian, H. Schaefer, I. Telford, S. Renner (2010)
Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from AustraliaProceedings of the National Academy of Sciences, 107
D. Kosambi (1943)
The estimation of map distances from recombination values.Annals of Human Genetics, 12
Jinfeng Chen, J. Staub, Y. Tashiro, S. Isshiki, S. Miyazaki (1997)
Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr.Euphytica, 96
P. Bhaduri, P. Bose (1947)
Cyto-genetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciationJournal of Genetics, 48
E. Illa, D. Sargent, Elena Girona, J. Bushakra, A. Cestaro, R. Crowhurst, M. Pindo, A. Cabrera, E. Knaap, A. Iezzoni, S. Gardiner, R. Velasco, P. Arús, D. Chagné, M. Troggio (2011)
Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the familyBMC Evolutionary Biology, 11
U. Lagercrantz (1998)
Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements.Genetics, 150 3
M. Lysak, A. Berr, A. Pečinka, R. Schmidt, K. McBreen, I. Schubert (2006)
Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species.Proceedings of the National Academy of Sciences of the United States of America, 103 13
F. Murat, J.H. Xu, E. Tannier, M. Abrouk, N. Guilhot, C. Pont, J. Messing, J. Salse (2010)
Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolutionNucleic Acids Res, 20
F.N. Wu, S.D. Tanksley (2010)
Chromosomal evolution in the plant family SolanaceaePlant J., 11
Yonghua Han, Zhonghua Zhang, Chunxia Liu, Jinhua Liu, Sanwen Huang, Jiming Jiang, W. Jin (2009)
Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivationProceedings of the National Academy of Sciences, 106
S. Vilanova, D. Sargent, P. Arús, A. Monfort (2008)
Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry)BMC Plant Biology, 8
J. Simpson, Kim Wong, S. Jackman
Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access
Zhen Li, Zhonghua Zhang, Pengcheng Yan, Sanwen Huang, Z. Fei, Kui Lin (2011)
RNA-Seq improves annotation of protein-coding genes in the cucumber genomeBMC Genomics, 12
J. Kirkbride (1993)
Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae): Botanical Identification of Cucumbers and Melons
M. Murray, W. Thompson (1980)
Rapid isolation of high molecular weight plant DNA.Nucleic acids research, 8 19
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool.Journal of molecular biology, 215 3
M. Rocchi, N. Archidiacono, R. Stanyon (2006)
Ancestral genomes reconstruction: an integrated, multi‐disciplinary approach is neededCurr. Opin. Plant Biol., 16
T.W. Whitaker (1933)
Cytological and phylogenetic studies in the CucurbitaceaeNucleic Acids Res., 94
I. Schubert, M.A. Lysak (2011)
Interpretation of karyotype evolution should consider chromosome structural constraintsGenome Res., 27
Sook Jung, A. Cestaro, M. Troggio, D. Main, P. Zheng, I. Cho, K. Folta, B. Sosinski, A. Abbott, J. Celton, P. Arús, V. Shulaev, I. Verde, M. Morgante, D. Rokhsar, R. Velasco, D. Sargent (2012)
Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamiliesBMC Genomics, 13
A. Darling, B. Mau, N. Perna (2010)
progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and RearrangementPLoS ONE, 5
V. González, A. Benjak, Elizabeth Hénaff, G. Mir, J. Casacuberta, J. Garcia-Mas, P. Puigdomènech (2010)
Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategyBMC Plant Biology, 10
S. Renner, H. Schaefer, A. Kocyan (2007)
Phylogenetics of Cucumis (Cucurbitaceae): Cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo)BMC Evolutionary Biology, 7
M. Murray, W. Thompson (1980)
RAPID ISOLATION OF HIGH-MOLECULAR WEIGHT DNA, 8
M.A. Koch, M. Kiefer (2005)
Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species – Capsella rubella, Arabidopsis lyrata subsp petraea, and A. thalianaChromosome Res., 92
Amanuel Ghebretinsae, M. Thulin, J. Barber (2007)
Relationships of cucumbers and melons unraveled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae).American journal of botany, 94 7
J. Salse (2012)
In silico archeogenomics unveils modern plant genome organisation, regulation and evolutionTrends Genet., 15
Florent Murat, Jian-Hong Xu, Éric Tannier, M. Abrouk, N. Guilhot, C. Pont, J. Messing, J. Salse (2010)
Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution.Genome research, 20 11
D.B. Lowry, J.H. Willis (2010)
A widespread chromosomal inversion polymorphism contributes to a major life‐history transition, local adaptation, and reproductive isolationProc. Natl Acad. Sci. USA, 8
A. Ruiz-Herrera, M. Farré, T. Robinson (2011)
Molecular cytogenetic and genomic insights into chromosomal evolutionHeredity, 108
I. Schubert, M. Lysak (2011)
Interpretation of karyotype evolution should consider chromosome structural constraints.Trends in genetics : TIG, 27 6
J. Garcia-Mas, A. Benjak, W. Sanseverino, Michael Bourgeois, G. Mir, V. González, Elizabeth Hénaff, F. Camara, L. Cozzuto, E. Lowy, T. Alioto, S. Capella-Gutiérrez, J. Blanca, J. Cañizares, P. Ziarsolo, D. Gonzalez-Ibeas, Luis Rodriguez-Moreno, M. Droege, Lei Du, M. Álvarez-Tejado, B. Lorente-Galdos, Marta Melé, Luming Yang, Y. Weng, A. Navarro, Tomàs Marquès-Bonet, M. Aranda, F. Nuez, B. Picó, T. Gabaldón, G. Roma, R. Guigó, J. Casacuberta, P. Arús, P. Puigdomènech (2012)
The genome of melon (Cucumis melo L.)Proceedings of the National Academy of Sciences, 109
C. Soderlund, Matthew Bomhoff, William Nelson (2011)
SyMAP v3.4: a turnkey synteny system with application to plant genomesNucleic Acids Research, 39
Yujun Han, S. Wessler (2010)
MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequencesNucleic Acids Research, 38
Y. Park, N. Katzir, Y. Brotman, J. King, F. Bertrand, M. Havey (2004)
Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.)Genome Res., 109
D. Koo, Y. Nam, D. Choi, J. Bang, H. Jong, Y. Hur (2010)
Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequencesChromosome Research, 18
J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J.M. Jones, İ. Birol (2009)
ABySS: a parallel assembler for short read sequence dataTheor. Appl. Genet., 19
D.‐H. Koo, Y.‐W. Nam, D. Choi, J.‐W. Bang, H. Jong, Y. Hur (2010)
Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequencesAnn. Eugen, 18
J.W. Ooijen, R.E. Voorrips (2001)
JoinMap Version 3.0 Software for the calculation of genetic linkage mapsBMC Evol. Biol.
G. Karpen, R. Allshire (1997)
The case for epigenetic effects on centromere identity and function.Trends in genetics : TIG, 13 12
N. Katzir, Yael Danin-Poleg, G. Tzuri, Z. Karchi, Uri Lavi, P. Cregan (1996)
Length polymorphism and homologies of microsatellites in several Cucurbitaceae speciesTheoretical and Applied Genetics, 93
M. Kirkpatrick (2010)
How and Why Chromosome Inversions EvolvePLoS Biology, 8
T. Mandáková, M. Lysak (2008)
Chromosomal Phylogeny and Karyotype Evolution in x=7 Crucifer Species (Brassicaceae)[W]The Plant Cell Online, 20
M. Kirkpatrick (2010)
How and why chromosome inversions evolveAm. J. Bot., 8
Y. Park, N. Katzir, Y. Brotman, J. King, F. Bertrand, M. Havey (2004)
Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.)Theoretical and Applied Genetics, 109
M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, Steven Jones, M. Marra (2009)
Circos: an information aesthetic for comparative genomics.Genome research, 19 9
S. Foissac, J. Gouzy, S. Rombauts, C. Mathé, J. Amselem, L. Sterck, Y. Peer, P. Rouzé, T. Schiex (2008)
Genome Annotation in Plants and Fungi: EuGene as a Model PlatformCurrent Bioinformatics, 3
J. Van, Ooijen Wageningen, Kyazma V (2001)
Software for the calculation of genetic linkage maps
Dawei Li, H. Cuevas, Luming Yang, Yuhong Li, J. Garcia-Mas, J. Zalapa, J. Staub, F. Luan, U. Reddy, Xiaoming He, Z. Gong, Y. Weng (2011)
Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mappingBMC Genomics, 12
M. Margulies, M. Egholm, William Altman, S. Attiya, J. Bader, Lisa Bemben, J. Berka, Michael Braverman, Yi-Ju Chen, Zhoutao Chen, Scott Dewell, Lei Du, J. Fierro, Xavier Gomes, B. Godwin, Wenshe He, S. Helgesen, Chun Ho, G. Irzyk, Szilveszter Jando, Maria Alenquer, T. Jarvie, K. Jirage, Jong-Bum Kim, James Knight, Janna Lanza, J. Leamon, S. Lefkowitz, M. Lei, Jing Li, K. Lohman, Hong Lu, V. Makhijani, K. McDade, M. McKenna, E. Myers, E. Nickerson, J. Nobile, Ramona Plant, Bernard Puc, M. Ronan, G. Roth, G. Sarkis, J. Simons, J. Simpson, Maithreyan Srinivasan, K. Tartaro, A. Tomasz, K. Vogt, G. Volkmer, Shally Wang, Yong Wang, M. Weiner, Pengguang Yu, R. Begley, J. Rothberg (2005)
Genome sequencing in microfabricated high-density picolitre reactorsNature, 437
Z. Cheng, G. Presting, C. Buell, R. Wing, J. Jiang (2001)
High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice.Genetics, 157 4
S. Neuhausen (2004)
Evaluation of restriction fragment length polymorphism in Cucumis meloTheoretical and Applied Genetics, 83
P. Sebastian, H. Schaefer, I.R.H. Telford, S.S. Renner (2010)
Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from AustraliaNucleic Acids Res., 107
Luming Yang, D. Koo, Yuhong Li, Xuejiao Zhang, F. Luan, M. Havey, Jiming Jiang, Y. Weng (2012)
Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly.The Plant journal : for cell and molecular biology, 71 6
M.A. Lysak, A. Berr, A. Pecinka, R. Schmidt, K. McBreen, I. Schubert (2006)
Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae speciesPlant Cell, 103
T. Thiel, W. Michalek, R. Varshney, A. Graner (2003)
Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)Theoretical and Applied Genetics, 106
J. Salse (2012)
In silico archeogenomics unveils modern plant genome organisation, regulation and evolution.Current opinion in plant biology, 15 2
Feinan Wu, S. Tanksley (2010)
Chromosomal evolution in the plant family SolanaceaeBMC Genomics, 11
Krithika Yogeeswaran, A. Frary, T. York, A. Amenta, A. Lesser, J. Nasrallah, S. Tanksley, M. Nasrallah (2005)
Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana.Genome research, 15 4
H. Schaefer (2007)
Cucumis (Cucurbitaceae) must include Cucumella, Dicoelospermum, Mukia, Myrmecosicyos, and Oreosyce: a recircumscription based on nuclear and plastid DNA dataBlumea, 52
A. Díaz, M. Fergany, Gelsomina Formisano, P. Ziarsolo, J. Blanca, Zhanjun Fei, J. Staub, J. Zalapa, H. Cuevas, G. Dace, M. Oliver, N. Boissot, C. Dogimont, M. Pitrat, R. Hofstede, P. Koert, R. Harel-Beja, G. Tzuri, V. Portnoy, S. Cohen, A. Schaffer, N. Katzir, Yong Xu, Haiying Zhang, N. Fukino, S. Matsumoto, J. Garcia-Mas, A. Monforte (2011)
A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)BMC Plant Biology, 11
M. Koch, M. Kiefer (2005)
Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species--Capsella rubella, Arabidopsis lyrata subsp. petraea, and A. thaliana.American journal of botany, 92 4
S. Vilanova, D.J. Sargent, P. Arus, A. Monfort (2008)
Synteny conservation between two distantly‐related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry)BMC Genomics, 8
Feng Cheng, T. Mandáková, Jian Wu, Q. Xie, M. Lysak, Xiaowu Wang (2013)
Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa[C][W]Plant Cell, 25
T. Thiel, W. Michalek, R.K. Varshney, A. Graner (2003)
Exploiting EST databases for the development and characterization of gene‐derived SSR‐markers in barley (Hordeum vulgare L.)BMC Plant Biol., 106
M. Abrouk, Florent Murat, C. Pont, J. Messing, S. Jackson, T. Faraut, Éric Tannier, C. Plomion, R. Cooke, C. Feuillet, J. Salse (2010)
Palaeogenomics of plants: synteny-based modelling of extinct ancestors.Trends in plant science, 15 9
K. Livingstone, V. Lackney, J. Blauth, Rik Wijk, M. Jahn (1999)
Genome mapping in capsicum and the evolution of genome structure in the solanaceae.Genetics, 152 3
D. Lowry, J. Willis (2010)
A Widespread Chromosomal Inversion Polymorphism Contributes to a Major Life-History Transition, Local Adaptation, and Reproductive IsolationPLoS Biology, 8
T. Whitaker (1933)
Cytological and Phylogenetic Studies in the CucurbitaceaeBotanical Gazette, 94
Sanwen Huang, Ruiqiang Li, Zhonghua Zhang, Li Li, X. Gu, Wei Fan, W. Lucas, Xiaowu Wang, B. Xie, Peixiang Ni, Yuanyuan Ren, Hong-mei Zhu, Jun Li, Kui Lin, W. Jin, Z. Fei, Guangcun Li, J. Staub, A. Kilian, E. Vossen, Yang Wu, Jie Guo, Jun He, Zhiqi Jia, Yi Ren, G. Tian, Yao Lu, Jue Ruan, W. Qian, Mingwei Wang, Quanfei Huang, Bo Li, Zhaoling Xuan, Jianjun Cao, Asan, Zhigang Wu, Juanbin Zhang, Q. Cai, Yinqi Bai, Bo Zhao, Yonghua Han, Ying Li, Xuefeng Li, Shenhao Wang, Qiuxiang Shi, Shiqiang Liu, W. Cho, Jae-Yean Kim, Yong Xu, K. Heller-Uszyńska, H. Miao, Zhouchao Cheng, Shengping Zhang, Jian Wu, Yuhong Yang, Houxiang Kang, Man Li, Huiqing Liang, Xiaoli Ren, Z. Shi, Ming-Xia Wen, Min Jian, Hailong Yang, Guojie Zhang, Zhentao Yang, Rui-Hui Chen, Shifang Liu, Jianwen Li, Lijia Ma, Hui Liu, Yan Zhou, J. Zhao, X. Fang, Guoqing Li, L. Fang, Yingrui Li, Dongyuan Liu, Hongkun Zheng, Yong Zhang, Nan Qin, Zhuo Li, Guohua Yang, Shuang Yang, L. Bolund, K. Kristiansen, Hancheng Zheng, Shaochuan Li, Xiuqing Zhang, Huanming Yang, Jian Wang, R. Sun, Bao-xi Zhang, S. Jiang, Jun Wang, Yong-chen Du, Songgang Li (2009)
The genome of the cucumber, Cucumis sativus L.Nature Genetics, 41
A. Hoffmann, L. Rieseberg (2008)
Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation?Annual review of ecology, evolution, and systematics, 39
A. Darling, B. Mau, F. Blattner, N. Perna (2004)
Mauve: multiple alignment of conserved genomic sequence with rearrangements.Genome research, 14 7
Zhao Xu, Hao Wang (2007)
LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposonsNucleic Acids Research, 35
D.D. Kosambi (1944)
The estimation of map distance from recombination valuesBull. Appl. Bot. Plant Breed., 12
R. Trivedi, R. Roy (1970)
Cytological Studies in Cucumis and CitrullusCytologia, 35
(1930)
Karyological investigations of the genus Cucumis
P. Cavagnaro, D. Senalik, Luming Yang, P. Simon, T. Harkins, C. Kodira, Sanwen Huang, Y. Weng (2010)
Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.)BMC Genomics, 11
Y. Danin-poleg, N. Reis, S. Baudracco-Arnas, M. Pitrat, J. Staub, M. Oliver, P. Arús, C. deVicente, N. Katzir (2000)
Simple sequence repeats in Cucumis mapping and map merging.Genome, 43 6
Z. Xu, H. Wang (2007)
LTR_FINDER: an efficient tool for the prediction of full‐length LTR retrotransposonsGenome Res., 35
M. Luo, Ken Deal, E. Akhunov, E. Akhunov, Alina Akhunova, Alina Akhunova, O. Anderson, James Anderson, N. Blake, Michael Clegg, Devin Coleman-Derr, E. Conley, C. Crossman, J. Dubcovsky, B. Gill, Y. Gu, J. Hadam, H. Heo, N. Huo, G. Lazo, Yaqin Ma, David Matthews, P. McGuire, Peter Morrell, C. Qualset, J. Renfro, D. Tabanao, L. Talbert, C. Tian, D. Toleno, D. Toleno, M. Warburton, Frank You, Wenjun Zhang, J. Dvorak (2009)
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in TriticeaeProceedings of the National Academy of Sciences, 106
M. Rocchi, N. Archidiacono, R. Stanyon (2006)
Ancestral genomes reconstruction: an integrated, multi-disciplinary approach is needed.Genome research, 16 12
In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2n = 2x = 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2n = 2x = 24 chromosomes, implying a reduction from n = 12 to n = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage‐specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1–AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian‐like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., , Nat. Genet. 41, 1275–1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia‐Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine‐scale understanding of the mechanisms of dysploid chromosome reduction that has not been achieved previously.
The Plant Journal – Wiley
Published: Jan 1, 2014
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.