Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil Influence of Hardness of Work Materials Under Several Cutting Conditions

Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil Influence of... This paper deals with the influence of hardness of work materials on flank wear, crater wear and finished surface roughness when using two types of high-speed steel (HSS) hob tool materials coated with (Al, Ti)N film. Specifically, hobbing with a minimal quantity lubrication (MQL) system is compared with dry hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The results are summarized as follows. (1) With SCM415 work material changed to hardness HB131, HB144 and HB161 by heat treatment, flank wear and crater wear of the tool are small when cutting comparatively hard HB161 work material, irrespective of the change in hob materials and cutting speeds. (2) With SCM435 work material changed to hardness HB172, HB195 and HB214, flank wear and crater wear tend to be small when cutting annealed HB172 work material. (3) When cutting SCM415 of hardness HB161 and SCM435 of hardness HB172, the finished surface roughness is small and the surface roughness of SCM415 is smaller than that of SCM435. (4) SCM415 of hardness HB161 is suitable for an MQL system in hobbing in terms of flank wear, crater wear and finished surface roughness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Materials Science and Applications World Academic Publishing Co.

Fundamental Research on Hobbing with Minimal Quantity Lubrication of Cutting Oil Influence of Hardness of Work Materials Under Several Cutting Conditions

Loading next page...
 
/lp/world-academic-publishing-co/fundamental-research-on-hobbing-with-minimal-quantity-lubrication-of-2Xr3AGoT7w
Publisher
THE WORLD ACADEMIC PUBLISHING CO. LIMITED
Copyright
Copyright © 2014, THE WORLD ACADEMIC PUBLISHING CO. LIMITED
ISSN
2306-9325
eISSN
2306-9317

Abstract

This paper deals with the influence of hardness of work materials on flank wear, crater wear and finished surface roughness when using two types of high-speed steel (HSS) hob tool materials coated with (Al, Ti)N film. Specifically, hobbing with a minimal quantity lubrication (MQL) system is compared with dry hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The results are summarized as follows. (1) With SCM415 work material changed to hardness HB131, HB144 and HB161 by heat treatment, flank wear and crater wear of the tool are small when cutting comparatively hard HB161 work material, irrespective of the change in hob materials and cutting speeds. (2) With SCM435 work material changed to hardness HB172, HB195 and HB214, flank wear and crater wear tend to be small when cutting annealed HB172 work material. (3) When cutting SCM415 of hardness HB161 and SCM435 of hardness HB172, the finished surface roughness is small and the surface roughness of SCM415 is smaller than that of SCM435. (4) SCM415 of hardness HB161 is suitable for an MQL system in hobbing in terms of flank wear, crater wear and finished surface roughness.

Journal

Advances in Materials Science and ApplicationsWorld Academic Publishing Co.

Published: Dec 25, 2013

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off