Effect of Melt Thermal Treatment on Eutectic Silicon Particles Characteristics in Cast Al-Si-Mg Alloys

Effect of Melt Thermal Treatment on Eutectic Silicon Particles Characteristics in Cast Al-Si-Mg... A new means of obtaining fine Si particles is through the use of a melt thermal treatment (MTT), where the mixing of low and high temperature alloy melts produces a fine Si structure. Modification is achieved by nuclei resulting from the degeneration of large atom clusters and some refractory solids in the low temperature melt when it is heated by the high temperature melt. This is a relatively recent technique which demonstrates promise as an alternative to Sr-modification, as it requires no element addition, thus reducing the risk of increased porosity normally associated with the addition of strontium to the melt. The use of melt superheat is also found to produce refinement of the eutectic Si structure. In this case, the high melt temperature assists in the degeneration of atom clusters, providing more nuclei for α-Al dendrite formation, and a resulting refinement of the microstructure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Materials Science and Applications World Academic Publishing Co.

Effect of Melt Thermal Treatment on Eutectic Silicon Particles Characteristics in Cast Al-Si-Mg Alloys

Loading next page...
 
/lp/world-academic-publishing-co/effect-of-melt-thermal-treatment-on-eutectic-silicon-particles-jL7jhCfr2v
Publisher
THE WORLD ACADEMIC PUBLISHING CO. LIMITED
Copyright
Copyright © 2014, THE WORLD ACADEMIC PUBLISHING CO. LIMITED
ISSN
2306-9325
eISSN
2306-9317

Abstract

A new means of obtaining fine Si particles is through the use of a melt thermal treatment (MTT), where the mixing of low and high temperature alloy melts produces a fine Si structure. Modification is achieved by nuclei resulting from the degeneration of large atom clusters and some refractory solids in the low temperature melt when it is heated by the high temperature melt. This is a relatively recent technique which demonstrates promise as an alternative to Sr-modification, as it requires no element addition, thus reducing the risk of increased porosity normally associated with the addition of strontium to the melt. The use of melt superheat is also found to produce refinement of the eutectic Si structure. In this case, the high melt temperature assists in the degeneration of atom clusters, providing more nuclei for α-Al dendrite formation, and a resulting refinement of the microstructure.

Journal

Advances in Materials Science and ApplicationsWorld Academic Publishing Co.

Published: Dec 25, 2013

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off