Whole Blood Redox Potential Correlates With Progressive Accumulation of Oxygen Debt and Acts as A Marker of Resuscitation in A Swine Hemorrhagic Shock Model

Whole Blood Redox Potential Correlates With Progressive Accumulation of Oxygen Debt and Acts as A... ABSTRACTIntroduction:Oxidation-reduction reactions involve electron exchanges that require optimal balance for proper cell function. This balance is measured via redox potential and reflects oxidative stress. Despite the critical role of oxidative stress in critical illness and injury, little is known regarding redox potential. We hypothesize redox potential measurements will correlate with accumulation of O2 debt produced by hemorrhage over time.Methods:Ten swine were studied using a polytrauma hemorrhagic shock model. Whole blood and plasma redox potential measures were obtained at defined stages of O2 debt (20 mL/kg, 40 mL/kg, 60 mL/kg, 80 mL/kg), and through resuscitation. Redox potential was determined by measuring open circuit potential using novel gold nanoporous electrodes with Ag/AgCl reference.Results:Whole blood redox potential showed negative change as O2 debt accumulated, exhibiting positive response during resuscitation, and correlated with O2 debt across all animals (P < 0.001). Redox potential changes throughout O2 debt accrual were significant compared with baseline (P≤0.05), and at end resuscitation compared with O2 debt 60 mL/kg (P = 0.05) and 80 mL/kg (P = 0.02). Whole blood redox potential measures also correlated with oxygen extraction ratio, ScvO2, and lactic acid, appearing very sensitive to acute changes. Plasma redox potential showed no correlation with O2 debt.Conclusions:Whole blood redox potential demonstrates significant correlation to O2 debt at all stages in this model. These results set the stage for further study of redox potential as a direct measure of oxidative stress and potential clinical tool. Given redox potential plasma performance, these measures should be made in whole blood versus plasma. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches Wolters Kluwer Health

Whole Blood Redox Potential Correlates With Progressive Accumulation of Oxygen Debt and Acts as A Marker of Resuscitation in A Swine Hemorrhagic Shock Model

Loading next page...
 
/lp/wolters_kluwer/whole-blood-redox-potential-correlates-with-progressive-accumulation-RQMAqTuM81
Publisher
Wolters Kluwer
Copyright
Copyright © 2017 by the Shock Society
ISSN
1073-2322
eISSN
1540-0514
D.O.I.
10.1097/SHK.0000000000000933
Publisher site
See Article on Publisher Site

Abstract

ABSTRACTIntroduction:Oxidation-reduction reactions involve electron exchanges that require optimal balance for proper cell function. This balance is measured via redox potential and reflects oxidative stress. Despite the critical role of oxidative stress in critical illness and injury, little is known regarding redox potential. We hypothesize redox potential measurements will correlate with accumulation of O2 debt produced by hemorrhage over time.Methods:Ten swine were studied using a polytrauma hemorrhagic shock model. Whole blood and plasma redox potential measures were obtained at defined stages of O2 debt (20 mL/kg, 40 mL/kg, 60 mL/kg, 80 mL/kg), and through resuscitation. Redox potential was determined by measuring open circuit potential using novel gold nanoporous electrodes with Ag/AgCl reference.Results:Whole blood redox potential showed negative change as O2 debt accumulated, exhibiting positive response during resuscitation, and correlated with O2 debt across all animals (P < 0.001). Redox potential changes throughout O2 debt accrual were significant compared with baseline (P≤0.05), and at end resuscitation compared with O2 debt 60 mL/kg (P = 0.05) and 80 mL/kg (P = 0.02). Whole blood redox potential measures also correlated with oxygen extraction ratio, ScvO2, and lactic acid, appearing very sensitive to acute changes. Plasma redox potential showed no correlation with O2 debt.Conclusions:Whole blood redox potential demonstrates significant correlation to O2 debt at all stages in this model. These results set the stage for further study of redox potential as a direct measure of oxidative stress and potential clinical tool. Given redox potential plasma performance, these measures should be made in whole blood versus plasma.

Journal

SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical ApproachesWolters Kluwer Health

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off