Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Evolving Role of Tumor Treating Fields in Managing Glioblastoma

The Evolving Role of Tumor Treating Fields in Managing Glioblastoma Glioblastoma (GBM) is a devastating brain tumor with poor prognosis despite advances in surgery, radiation, and chemotherapy. Survival of patients with glioblastoma remains poor, with only 1 in 4 patients alive at 2 years, and a 5-year survival rate of about 5%. Recurrence is nearly universal and, after recurrence, prognosis is poor with very short progression-free survival and overall survival (OS). Various salvage chemotherapy strategies have been applied with limited success. Tumor Treating Fields (TTFields) are a novel treatment modality approved for treatment of either newly diagnosed or recurrent GBM. TTFields therapy involves a medical device and transducer arrays to provide targeted delivery of low intensity, intermediate frequency, alternating electric fields to produce antimitotic effects selective for rapidly dividing tumor cells with limited toxicity. In the phase 3 EF-14 trial, TTFields plus temozolomide provided significantly longer progression-free survival and OS compared with temozolomide alone in patients with newly diagnosed GBM after initial chemoradiotherapy. The addition of TTFields to standard therapy improved median OS from 15.6 to 20.5 months (P=0.04). In the phase 3 EF-11 trial, for recurrent GBM, TTFields provided comparable efficacy as investigator’s choice systemic therapy, with improved patient-reported quality of life and a lower incidence of serious adverse events. Primary toxicity associated with TTFields is skin irritation generally managed with array relocation and topical treatments including antibiotics and steroids. TTFields therapy has demonstrated proven efficacy in management of GBM, including improvement in OS for patients with newly diagnosed GBM, and is under current investigation in other brain and extracranial tumors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Clinical Oncology Wolters Kluwer Health

The Evolving Role of Tumor Treating Fields in Managing Glioblastoma

Loading next page...
1
 
/lp/wolters_kluwer/the-evolving-role-of-tumor-treating-fields-in-managing-glioblastoma-EVuGn5YpWn

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Wolters Kluwer Health
Copyright
Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0277-3732
eISSN
1537-453X
DOI
10.1097/COC.0000000000000395
Publisher site
See Article on Publisher Site

Abstract

Glioblastoma (GBM) is a devastating brain tumor with poor prognosis despite advances in surgery, radiation, and chemotherapy. Survival of patients with glioblastoma remains poor, with only 1 in 4 patients alive at 2 years, and a 5-year survival rate of about 5%. Recurrence is nearly universal and, after recurrence, prognosis is poor with very short progression-free survival and overall survival (OS). Various salvage chemotherapy strategies have been applied with limited success. Tumor Treating Fields (TTFields) are a novel treatment modality approved for treatment of either newly diagnosed or recurrent GBM. TTFields therapy involves a medical device and transducer arrays to provide targeted delivery of low intensity, intermediate frequency, alternating electric fields to produce antimitotic effects selective for rapidly dividing tumor cells with limited toxicity. In the phase 3 EF-14 trial, TTFields plus temozolomide provided significantly longer progression-free survival and OS compared with temozolomide alone in patients with newly diagnosed GBM after initial chemoradiotherapy. The addition of TTFields to standard therapy improved median OS from 15.6 to 20.5 months (P=0.04). In the phase 3 EF-11 trial, for recurrent GBM, TTFields provided comparable efficacy as investigator’s choice systemic therapy, with improved patient-reported quality of life and a lower incidence of serious adverse events. Primary toxicity associated with TTFields is skin irritation generally managed with array relocation and topical treatments including antibiotics and steroids. TTFields therapy has demonstrated proven efficacy in management of GBM, including improvement in OS for patients with newly diagnosed GBM, and is under current investigation in other brain and extracranial tumors.

Journal

American Journal of Clinical OncologyWolters Kluwer Health

Published: Feb 1, 2018

References