Recent progress in understanding HIV reservoirs

Recent progress in understanding HIV reservoirs Purpose of reviewReservoirs of HIV-1-infected cells persist long-term despite highly effective antiretroviral suppression therapy and represent the main barrier against a cure for HIV-1. This review summarizes recent advances in understanding the complexity and diversity of viral reservoir cells.Recent findingsLatently infected memory CD4 T cells are the predominant cell compartment responsible for viral persistence, but some studies suggest that myeloid cells, and possibly hematopoietic progenitors, can also serve as long-term viral reservoirs. Specific phenotypic markers, including T-cell activation and exhaustion molecules, may denote CD4 T cells enriched for replication-competent proviruses. Clonal proliferation of infected CD4 T cells in vivo represents an important mechanism responsible for the remarkable long-term stability of the viral reservoir. Multiple new assays, including near full-genome proviral sequencing and simplified versions of viral outgrowth assays, are being developed to analyze and quantify persisting reservoirs of HIV-1-infected cells.SummaryRecent technological advances allow to profile the molecular structure and composition of viral reservoir cells in great detail. Continuous progress in understanding phenotypic and functional properties of viral reservoir cells provides clues for novel clinical interventions to destabilize viral persistence during antiretroviral therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Opinion in HIV and Aids Wolters Kluwer Health

Recent progress in understanding HIV reservoirs

Loading next page...
 
/lp/wolters_kluwer/recent-progress-in-understanding-hiv-reservoirs-UoHIauruFv
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
1746-630X
eISSN
1746-6318
D.O.I.
10.1097/COH.0000000000000441
Publisher site
See Article on Publisher Site

Abstract

Purpose of reviewReservoirs of HIV-1-infected cells persist long-term despite highly effective antiretroviral suppression therapy and represent the main barrier against a cure for HIV-1. This review summarizes recent advances in understanding the complexity and diversity of viral reservoir cells.Recent findingsLatently infected memory CD4 T cells are the predominant cell compartment responsible for viral persistence, but some studies suggest that myeloid cells, and possibly hematopoietic progenitors, can also serve as long-term viral reservoirs. Specific phenotypic markers, including T-cell activation and exhaustion molecules, may denote CD4 T cells enriched for replication-competent proviruses. Clonal proliferation of infected CD4 T cells in vivo represents an important mechanism responsible for the remarkable long-term stability of the viral reservoir. Multiple new assays, including near full-genome proviral sequencing and simplified versions of viral outgrowth assays, are being developed to analyze and quantify persisting reservoirs of HIV-1-infected cells.SummaryRecent technological advances allow to profile the molecular structure and composition of viral reservoir cells in great detail. Continuous progress in understanding phenotypic and functional properties of viral reservoir cells provides clues for novel clinical interventions to destabilize viral persistence during antiretroviral therapy.

Journal

Current Opinion in HIV and AidsWolters Kluwer Health

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off