Quetiapine prevents Aβ25–35-induced cell death in cultured neuron by enhancing brain-derived neurotrophic factor release from astrocyte

Quetiapine prevents Aβ25–35-induced cell death in cultured neuron by enhancing brain-derived... β-Amyloid (Aβ)-induced neuronal toxicity is an early event in the pathogenesis of Alzheimer’s disease. Quetiapine (QTP) is an atypical antipsychotic drug that has neuroprotectant properties, but little is known about its direct protective effects on neurons against the Aβ-induced cell toxicity. In the present study, we investigated the neuroprotective effects of QTP on Aβ25–35-induced cell death and the possible underlying mechanisms in primary cultures of neurons. Exposure of cortical neurons to 10 μM or more Aβ25–35 caused significant viability loss in a MTT assay, and the toxic effects were not significantly prevented by the simultaneous coadministration of QTP. However, pretreated astrocyte conditioned medium (ACM) with QTP (ACMQTP) for 24 h markedly protected the neurons against the amyloid-induced cell loss. Furthermore, we revealed that QTP increased both the release of brain-derived neurotrophic factor from cultured astrocytes and the phosphorylation of extracellular signal–regulated kinase after 24 h of treatment, which might be responsible for its protective effects on neurons. Consistent with the aforementioned findings, the protective effects of ACM on neurons could potentially be abolished by the extracellular signal–regulated kinase inhibitor and tropomyosin receptor kinase B receptor blocker. In conclusion, our data demonstrated that QTP exerted its neuroprotective effects against amyloid toxicity by enhancing the brain-derived neurotrophic factor release from astrocytes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroreport Wolters Kluwer Health

Quetiapine prevents Aβ25–35-induced cell death in cultured neuron by enhancing brain-derived neurotrophic factor release from astrocyte

Loading next page...
 
/lp/wolters_kluwer/quetiapine-prevents-a-25-35-induced-cell-death-in-cultured-neuron-by-SJbZ09gGE0
Publisher
Wolters Kluwer Health
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
0959-4965
eISSN
1473-558X
D.O.I.
10.1097/WNR.0000000000000911
Publisher site
See Article on Publisher Site

Abstract

β-Amyloid (Aβ)-induced neuronal toxicity is an early event in the pathogenesis of Alzheimer’s disease. Quetiapine (QTP) is an atypical antipsychotic drug that has neuroprotectant properties, but little is known about its direct protective effects on neurons against the Aβ-induced cell toxicity. In the present study, we investigated the neuroprotective effects of QTP on Aβ25–35-induced cell death and the possible underlying mechanisms in primary cultures of neurons. Exposure of cortical neurons to 10 μM or more Aβ25–35 caused significant viability loss in a MTT assay, and the toxic effects were not significantly prevented by the simultaneous coadministration of QTP. However, pretreated astrocyte conditioned medium (ACM) with QTP (ACMQTP) for 24 h markedly protected the neurons against the amyloid-induced cell loss. Furthermore, we revealed that QTP increased both the release of brain-derived neurotrophic factor from cultured astrocytes and the phosphorylation of extracellular signal–regulated kinase after 24 h of treatment, which might be responsible for its protective effects on neurons. Consistent with the aforementioned findings, the protective effects of ACM on neurons could potentially be abolished by the extracellular signal–regulated kinase inhibitor and tropomyosin receptor kinase B receptor blocker. In conclusion, our data demonstrated that QTP exerted its neuroprotective effects against amyloid toxicity by enhancing the brain-derived neurotrophic factor release from astrocytes.

Journal

NeuroreportWolters Kluwer Health

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off