Pretreatment with minocycline improves neurogenesis and behavior performance after midazolam exposure in neonatal rats

Pretreatment with minocycline improves neurogenesis and behavior performance after midazolam... Laboratory studies suggested that general anesthetics induce neuroapoptosis and inhibit neurogenesis in developing brains of animals. Minocycline exerts neuroprotection against a wide range of toxic insults in neurodegenerative diseases models. Here, we investigate whether minocycline can alleviate neurogenetic damage and improve cognition following midazolam exposure in neonatal rats. Postnatal 7 days rats were divided randomly into three groups: control group (C), midazolam group (M), and minocycline pretreatment group (MP). After exposure to midazolam, the cell proliferation in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampus in pups was analyzed by bromodeoxyuridine immunochemistry at 7 days after the administration of anesthesia. Cognitive function was assessed using the Morris water-maze test at 35 days after midazolam exposure. Compared with the control, midazolam reduced cell proliferation both in the SVZ and in the SGZ of the hippocampus of neonatal rats, and decreased spatial learning and memory ability of rats in adulthood significantly. Pretreatment with minocycline increased cell proliferation both in the SVZ and in the SGZ of the hippocampus and improved spatial learning and memory ability compared with midazolam, but it did not mitigate the changes to the normal levels compared with the controls. Our results indicated that pretreatment with minocycline can alleviate midazolam-induced damage in neural stem cell proliferation of neonatal rats and improve spatial learning and memory ability of rats in adulthood. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroreport Wolters Kluwer Health

Pretreatment with minocycline improves neurogenesis and behavior performance after midazolam exposure in neonatal rats

Loading next page...
 
/lp/wolters_kluwer/pretreatment-with-minocycline-improves-neurogenesis-and-behavior-4qDOslx7W0
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0959-4965
eISSN
1473-558X
D.O.I.
10.1097/WNR.0000000000000937
Publisher site
See Article on Publisher Site

Abstract

Laboratory studies suggested that general anesthetics induce neuroapoptosis and inhibit neurogenesis in developing brains of animals. Minocycline exerts neuroprotection against a wide range of toxic insults in neurodegenerative diseases models. Here, we investigate whether minocycline can alleviate neurogenetic damage and improve cognition following midazolam exposure in neonatal rats. Postnatal 7 days rats were divided randomly into three groups: control group (C), midazolam group (M), and minocycline pretreatment group (MP). After exposure to midazolam, the cell proliferation in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampus in pups was analyzed by bromodeoxyuridine immunochemistry at 7 days after the administration of anesthesia. Cognitive function was assessed using the Morris water-maze test at 35 days after midazolam exposure. Compared with the control, midazolam reduced cell proliferation both in the SVZ and in the SGZ of the hippocampus of neonatal rats, and decreased spatial learning and memory ability of rats in adulthood significantly. Pretreatment with minocycline increased cell proliferation both in the SVZ and in the SGZ of the hippocampus and improved spatial learning and memory ability compared with midazolam, but it did not mitigate the changes to the normal levels compared with the controls. Our results indicated that pretreatment with minocycline can alleviate midazolam-induced damage in neural stem cell proliferation of neonatal rats and improve spatial learning and memory ability of rats in adulthood.

Journal

NeuroreportWolters Kluwer Health

Published: Feb 7, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off