Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer's disease

Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer's... Purpose of reviewThe current review discusses the biology and metabolism of the essential pyridine nucleotide nicotinamide adenine dinucleotide (NAD+) in the central nervous system. We also review recent work suggesting important neuroprotective effects that may be associated with the promotion of NAD+ levels through NAD+ precursors against Alzheimer's disease.Recent findingsPerturbations in the physiological homoeostatic state of the brain during the ageing process can lead to impaired cellular function, and ultimately leads to loss of brain integrity and accelerates cognitive and memory decline. Increased oxidative stress has been shown to impair normal cellular bioenergetics and enhance the depletion of the essential nucleotides NAD+ and ATP. NAD+ and its precursors have been shown to improve cellular homoeostasis based on association with dietary requirements, and treatment and management of several inflammatory and metabolic diseases in vivo. Cellular NAD+ pools have been shown to be reduced in the ageing brain, and treatment with NAD+ precursors has been hypothesized to restore these levels and attenuate disruption in cellular bioenergetics.SummaryNAD+ and its precursors may represent an important therapeutic strategy to maintain optimal cellular homoeostatic functions in the brain. NAD+ precursors are available in a variety of foods and may be translated to the clinic in the form of supplements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Opinion in Psychiatry Wolters Kluwer Health

Nicotinamide adenine dinucleotide and its related precursors for the treatment of Alzheimer's disease

Loading next page...
 
/lp/wolters_kluwer/nicotinamide-adenine-dinucleotide-and-its-related-precursors-for-the-wFT3UYHk1t
Publisher
Wolters Kluwer Health
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
0951-7367
eISSN
1473-6578
D.O.I.
10.1097/YCO.0000000000000394
Publisher site
See Article on Publisher Site

Abstract

Purpose of reviewThe current review discusses the biology and metabolism of the essential pyridine nucleotide nicotinamide adenine dinucleotide (NAD+) in the central nervous system. We also review recent work suggesting important neuroprotective effects that may be associated with the promotion of NAD+ levels through NAD+ precursors against Alzheimer's disease.Recent findingsPerturbations in the physiological homoeostatic state of the brain during the ageing process can lead to impaired cellular function, and ultimately leads to loss of brain integrity and accelerates cognitive and memory decline. Increased oxidative stress has been shown to impair normal cellular bioenergetics and enhance the depletion of the essential nucleotides NAD+ and ATP. NAD+ and its precursors have been shown to improve cellular homoeostasis based on association with dietary requirements, and treatment and management of several inflammatory and metabolic diseases in vivo. Cellular NAD+ pools have been shown to be reduced in the ageing brain, and treatment with NAD+ precursors has been hypothesized to restore these levels and attenuate disruption in cellular bioenergetics.SummaryNAD+ and its precursors may represent an important therapeutic strategy to maintain optimal cellular homoeostatic functions in the brain. NAD+ precursors are available in a variety of foods and may be translated to the clinic in the form of supplements.

Journal

Current Opinion in PsychiatryWolters Kluwer Health

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off