MiR-664a-3p expression in patients with obstructive sleep apnea

MiR-664a-3p expression in patients with obstructive sleep apnea AbstractThe early prediction of atherosclerosis (AS) is important in the management of obstructive sleep apnea patients (OSA). MicroRNA (miRNA) plays a vital role in the evolution of OSA and AS. Its differential expression may therefore serve as a diagnostic and prognostic biomarker of AS in OSA. The aim of this study was to identify specific serum miRNAs that could serve as a novel screening signature of AS in OSA patients. The specificity and sensitivity of these miRNAs in the early diagnosis of AS in OSA patients were then determined.The 128 participants in this study underwent maximum carotid intima-media thickness (CIMT) measurements and polysomnography and were divided into 4 groups: 27 healthy volunteers with normal max-CIMT, 31 healthy volunteers with increased max-CIMT, 35 OSA patients with normal max-CIMT, and 35 OSA patients with iCIMT. MiRNA was extracted from the 12 participants’ serum (3 participants each groups) and used to establish miRNA libraries for deep sequencing. A total of 116 participants were quantified by qRT- PCR. Correlations between differential expression of miRNAs and CIMT were assessed using the Spearman correlation coefficient. Our study was approved by the Ethics Committee of our hospital and was conducted in line with the Helsinki Declaration.MiR-664a-3p expression was quantified by qRT-PCR. Correlations between miR-664a-3p expression and CIMT were assessed using the Spearman correlation coefficient. The results showed that the miR-664a-3p was downregulated in the OSA, OSA with iCMIT, and nCIMT groups compared with the control group.The demonstrated potential of circulating miR-664a-3p as a noninvasive marker of AS in essential OSA patients should be confirmed in further studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medicine Wolters Kluwer Health

MiR-664a-3p expression in patients with obstructive sleep apnea

Loading next page...
 
/lp/wolters_kluwer/mir-664a-3p-expression-in-patients-with-obstructive-sleep-apnea-OjV09hXMwu
Publisher
Wolters Kluwer Health
Copyright
Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0025-7974
eISSN
1536-5964
D.O.I.
10.1097/MD.0000000000009813
Publisher site
See Article on Publisher Site

Abstract

AbstractThe early prediction of atherosclerosis (AS) is important in the management of obstructive sleep apnea patients (OSA). MicroRNA (miRNA) plays a vital role in the evolution of OSA and AS. Its differential expression may therefore serve as a diagnostic and prognostic biomarker of AS in OSA. The aim of this study was to identify specific serum miRNAs that could serve as a novel screening signature of AS in OSA patients. The specificity and sensitivity of these miRNAs in the early diagnosis of AS in OSA patients were then determined.The 128 participants in this study underwent maximum carotid intima-media thickness (CIMT) measurements and polysomnography and were divided into 4 groups: 27 healthy volunteers with normal max-CIMT, 31 healthy volunteers with increased max-CIMT, 35 OSA patients with normal max-CIMT, and 35 OSA patients with iCIMT. MiRNA was extracted from the 12 participants’ serum (3 participants each groups) and used to establish miRNA libraries for deep sequencing. A total of 116 participants were quantified by qRT- PCR. Correlations between differential expression of miRNAs and CIMT were assessed using the Spearman correlation coefficient. Our study was approved by the Ethics Committee of our hospital and was conducted in line with the Helsinki Declaration.MiR-664a-3p expression was quantified by qRT-PCR. Correlations between miR-664a-3p expression and CIMT were assessed using the Spearman correlation coefficient. The results showed that the miR-664a-3p was downregulated in the OSA, OSA with iCMIT, and nCIMT groups compared with the control group.The demonstrated potential of circulating miR-664a-3p as a noninvasive marker of AS in essential OSA patients should be confirmed in further studies.

Journal

MedicineWolters Kluwer Health

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off