Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells

Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis... AbstractKupffer cells (KCs) play a crucial role in the pathogenesis of acute-on-chronic liver failure (ACLF) which is characterized by acute and severe disease in patients with preexisting liver disease and shows high mortality. Long noncoding RNAs (lncRNAs) are recently found to be involved in gene regulation. However, the mechanisms of how KCs are regulated by inflammatory factors, tumor necrosis factor-α (TNF-α), and whether lncRNAs are involved in the process remain largely unknown. Hence, we investigated the role of lncRNAs in the cytotoxicity of TNF-α on KCs.lncRNA array (The lncRNAs in the array are apoptosis-related lncRNAs reported in some research papers.) was used to identify lncRNAs related with liver fibrosis. Annexin V/protease inhibitor (PI) staining was used for detection of cell apoptosis. Real time-polymerase chain reaction was utilized for analysis of mRNA levels of lncRNA hypoxia-inducible factor 1 alpha-antisense RNA 1 (HIF1A-AS1) and apoptosis-related genes. Western blot was implied to the determination of lymphoid enhancer factor-1 (LEF-1).In this study, we found that HIF1A-AS1 could be upregulated by TNF-α by lncRNA array analysis and knockdown of HIF1A-AS1 significantly rescued cell apoptosis induced by TNF-α. Moreover, inhibition of HIF1A-AS1 markedly reduced mRNA level of caspase 3 which can be significantly enhanced by TNF-α. Furthermore, HIF1A-AS1 showed binding sites for LEF-1 and siRNA-mediated downregulation of LEF-1 decreased HIF1A-AS1 level in KCs treated with TNF-α.This study elucidates a new role of HIF1A-AS1 in TNF-α-induced cell apoptosis and provides potential therapeutic targets for ACLF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medicine Wolters Kluwer Health

Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells

Loading next page...
 
/lp/wolters_kluwer/long-noncoding-rna-hypoxia-inducible-factor-1-alpha-antisense-rna-1-nCUGgyE47R
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0025-7974
eISSN
1536-5964
D.O.I.
10.1097/MD.0000000000009483
Publisher site
See Article on Publisher Site

Abstract

AbstractKupffer cells (KCs) play a crucial role in the pathogenesis of acute-on-chronic liver failure (ACLF) which is characterized by acute and severe disease in patients with preexisting liver disease and shows high mortality. Long noncoding RNAs (lncRNAs) are recently found to be involved in gene regulation. However, the mechanisms of how KCs are regulated by inflammatory factors, tumor necrosis factor-α (TNF-α), and whether lncRNAs are involved in the process remain largely unknown. Hence, we investigated the role of lncRNAs in the cytotoxicity of TNF-α on KCs.lncRNA array (The lncRNAs in the array are apoptosis-related lncRNAs reported in some research papers.) was used to identify lncRNAs related with liver fibrosis. Annexin V/protease inhibitor (PI) staining was used for detection of cell apoptosis. Real time-polymerase chain reaction was utilized for analysis of mRNA levels of lncRNA hypoxia-inducible factor 1 alpha-antisense RNA 1 (HIF1A-AS1) and apoptosis-related genes. Western blot was implied to the determination of lymphoid enhancer factor-1 (LEF-1).In this study, we found that HIF1A-AS1 could be upregulated by TNF-α by lncRNA array analysis and knockdown of HIF1A-AS1 significantly rescued cell apoptosis induced by TNF-α. Moreover, inhibition of HIF1A-AS1 markedly reduced mRNA level of caspase 3 which can be significantly enhanced by TNF-α. Furthermore, HIF1A-AS1 showed binding sites for LEF-1 and siRNA-mediated downregulation of LEF-1 decreased HIF1A-AS1 level in KCs treated with TNF-α.This study elucidates a new role of HIF1A-AS1 in TNF-α-induced cell apoptosis and provides potential therapeutic targets for ACLF.

Journal

MedicineWolters Kluwer Health

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off