“Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity

“Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week... AbstractBackground:“Living High-Training Low” (LHTL) is effective for the improvement of athletic ability; however, little is known about the effect of LHTL on obese individuals. The present study determined whether LHTL would have favorable influence on body composition, rebalance the appetite hormones, and explore the underlying mechanism.Methods:Adolescents with obesity [body mass index (BMI) >30 kg/m2] were randomly assigned to “Living Low-Training Low” (LLTL, n = 19) group that slept in a normobaric normoxia condition and the LHTL (n = 16) group slept in a normobaric hypoxia room (14.7% PO2 ∼2700 m). Both groups underwent the same aerobic exercise training program. Morphological, blood lipids, and appetite hormones were measured and assessed.Results:After the intervention, the body composition improved in both groups, whereas reductions in body weight (BW), BMI, and lean body mass increased significantly in the LHTL group (all, P < .05). In the LLTL group, cholecystokinin (CCK) decreased remarkably (P < .05) and CCK changes were positively associated with changes in BW (r = 0.585, P = .011) and BMI (r = 0.587, P = .010). However, in the LHTL group, changes in plasma glucagon-like peptide-1 (GLP-1) and interleukin-6 (IL-6) levels, positively correlated with each other (r = 0.708, P = .015) but negatively with BW changes (r = −0.608, P = .027 and r = −0.518, P = .048, respectively).Conclusion:The results indicated that LHTL could induce more weight loss safely and efficiently as compared to LLTL and increase the plasma GLP-1 levels that may be mediated by IL-6 to rebalance the appetite. Thus, an efficient method to treat obesity and prevent weight regain by appetite rebalance in hypoxia condition was established. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medicine Wolters Kluwer Health

“Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity

Loading next page...
 
/lp/wolters_kluwer/living-high-training-low-improved-weight-loss-and-glucagon-like-ummcqePAWn
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0025-7974
eISSN
1536-5964
D.O.I.
10.1097/MD.0000000000009943
Publisher site
See Article on Publisher Site

Abstract

AbstractBackground:“Living High-Training Low” (LHTL) is effective for the improvement of athletic ability; however, little is known about the effect of LHTL on obese individuals. The present study determined whether LHTL would have favorable influence on body composition, rebalance the appetite hormones, and explore the underlying mechanism.Methods:Adolescents with obesity [body mass index (BMI) >30 kg/m2] were randomly assigned to “Living Low-Training Low” (LLTL, n = 19) group that slept in a normobaric normoxia condition and the LHTL (n = 16) group slept in a normobaric hypoxia room (14.7% PO2 ∼2700 m). Both groups underwent the same aerobic exercise training program. Morphological, blood lipids, and appetite hormones were measured and assessed.Results:After the intervention, the body composition improved in both groups, whereas reductions in body weight (BW), BMI, and lean body mass increased significantly in the LHTL group (all, P < .05). In the LLTL group, cholecystokinin (CCK) decreased remarkably (P < .05) and CCK changes were positively associated with changes in BW (r = 0.585, P = .011) and BMI (r = 0.587, P = .010). However, in the LHTL group, changes in plasma glucagon-like peptide-1 (GLP-1) and interleukin-6 (IL-6) levels, positively correlated with each other (r = 0.708, P = .015) but negatively with BW changes (r = −0.608, P = .027 and r = −0.518, P = .048, respectively).Conclusion:The results indicated that LHTL could induce more weight loss safely and efficiently as compared to LLTL and increase the plasma GLP-1 levels that may be mediated by IL-6 to rebalance the appetite. Thus, an efficient method to treat obesity and prevent weight regain by appetite rebalance in hypoxia condition was established.

Journal

MedicineWolters Kluwer Health

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off