Impact of vitamin D receptor and binding protein gene polymorphisms in clinical and laboratory data of HCV patients

Impact of vitamin D receptor and binding protein gene polymorphisms in clinical and laboratory... AbstractPotential relationship of vitamin D, vitamin D receptor (VDR), and vitamin D binding protein (DBP) have been suggested in the pathophysiology of hepatitis C virus (HCV) infection. The aim of this observational study is to determine vitamin D levels, and VDR and DBP genetic polymorphism according demographic and laboratory data in chronic HCV patients (CHC).A total of 148 CHC patients gave serum samples for testing 25-hydroxyvitamin D (25 (OH)D) level by immunochemiluminometric assay (<20 ng/mL defined as deficient) and donated blood samples to allelic discrimination analysis using TaqMan assays. Analyzed single nucleotide polymorphisms (SNPs) were: VDR-rs7975232 (ApaI) C>A, rs731236 A>G (TaqI), rs1544410 C>T (BsmI), rs10735810 T>C (FokI) and carrier globulin/binding protein (GC)-rs4588 and rs7041 and the haplotype bAt [CCA]. Hepatic fibrosis was assessed using Fib-4 and Forns index.Eighty-two (54.40%) patients demonstrated deficiency of vitamin D and this was associated to AST (P = .019 [CI: 1.003–1.034]), total cholesterol (P = .038 [CI: 1.004–1.164]), fibrosis grade (P < .001 [CI: 0.000–0.844]), and FokI (P = .028) allele T presence. Association was found between VDR polymorphism and fibrosis (BsmI andTaqI), triglycerides (TaqI), and HDL (FokI). DBP polymorphism was associated to HCV genotype (GC rs7041), previous HCV treatment, and GGT (GC rs4588).In conclusion, low frequency of vitamin D deficiency was found, but VDR polymorphisms were frequently associated to fibrosis grade suggesting that they could be used as disease evaluation markers to understand the mechanisms underlying the virus–host interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medicine Wolters Kluwer Health

Loading next page...
 
/lp/wolters_kluwer/impact-of-vitamin-d-receptor-and-binding-protein-gene-polymorphisms-in-80yJ4wamO8
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0025-7974
eISSN
1536-5964
D.O.I.
10.1097/MD.0000000000009881
Publisher site
See Article on Publisher Site

Abstract

AbstractPotential relationship of vitamin D, vitamin D receptor (VDR), and vitamin D binding protein (DBP) have been suggested in the pathophysiology of hepatitis C virus (HCV) infection. The aim of this observational study is to determine vitamin D levels, and VDR and DBP genetic polymorphism according demographic and laboratory data in chronic HCV patients (CHC).A total of 148 CHC patients gave serum samples for testing 25-hydroxyvitamin D (25 (OH)D) level by immunochemiluminometric assay (<20 ng/mL defined as deficient) and donated blood samples to allelic discrimination analysis using TaqMan assays. Analyzed single nucleotide polymorphisms (SNPs) were: VDR-rs7975232 (ApaI) C>A, rs731236 A>G (TaqI), rs1544410 C>T (BsmI), rs10735810 T>C (FokI) and carrier globulin/binding protein (GC)-rs4588 and rs7041 and the haplotype bAt [CCA]. Hepatic fibrosis was assessed using Fib-4 and Forns index.Eighty-two (54.40%) patients demonstrated deficiency of vitamin D and this was associated to AST (P = .019 [CI: 1.003–1.034]), total cholesterol (P = .038 [CI: 1.004–1.164]), fibrosis grade (P < .001 [CI: 0.000–0.844]), and FokI (P = .028) allele T presence. Association was found between VDR polymorphism and fibrosis (BsmI andTaqI), triglycerides (TaqI), and HDL (FokI). DBP polymorphism was associated to HCV genotype (GC rs7041), previous HCV treatment, and GGT (GC rs4588).In conclusion, low frequency of vitamin D deficiency was found, but VDR polymorphisms were frequently associated to fibrosis grade suggesting that they could be used as disease evaluation markers to understand the mechanisms underlying the virus–host interaction.

Journal

MedicineWolters Kluwer Health

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off