Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors

Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune... Purpose of reviewThis review discusses the rationale, efficacy, and toxicity of a variety of immune approaches being evaluated in the therapy of acute myeloid leukemia (AML) including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, and immune checkpoint blockade via antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed-death 1 (PD-1).Recent findingsThe stellar success of immune therapies that harness the power of T cells in solid tumors and an improved understanding of the immune system in patients with hematologic malignancies have resulted in major efforts to develop immune therapies for the treatment of patients with AML. Monoclonal antibodies in AML therapy include naked antibodies against AML surface antigens such as CD33 (e.g. lintuzumab) or CD38 (e.g. daratumumab), antibodies conjugated to toxins in various anti-CD33 (gemtuzumab ozogamicin, SGN33A, IMGN779) and anti-CD123 (SL-401, SGN-CD123A) formulations, and antibodies conjugated to radioactive particles such as 131I or 225Ac-labeled anti-CD33 or anti-CD45 antibodies. Additional antigenic targets of interest in AML include CLL1, CD38, CD25, TIM3, FLT3, and others. Approaches to harness the body's own T cells against AML include antibodies that recruit and induce cytotoxicity of tumor cells by T cells (bispecific T-cell engager [BiTE] such as CD33 x CD3 (e.g. AMG 330) or CD123 x CD3 (e.g. flotetuzumab, JNJ-63709178) or antibodies that block immune checkpoint receptors CTLA4 (e.g. ipilimumab) or PD1/PD-L1 (e.g. nivolumab, pembrolizumab, avelumab) on T cells, unleashing the patients’ T cells against leukemic cells.SummaryThe ongoing trials and well designed correlative interrogation of the immune system in patients treated on such trials will further enhance our understanding and clinical application of immune therapies as single-agent and combination approaches for the treatment of AML. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Opinion in Hematology Wolters Kluwer Health

Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors

Loading next page...
 
/lp/wolters_kluwer/immune-therapies-in-acute-myeloid-leukemia-a-focus-on-monoclonal-6p2mZnOW9z
Publisher
Wolters Kluwer Health
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
1065-6251
eISSN
1531-7048
D.O.I.
10.1097/MOH.0000000000000401
Publisher site
See Article on Publisher Site

Abstract

Purpose of reviewThis review discusses the rationale, efficacy, and toxicity of a variety of immune approaches being evaluated in the therapy of acute myeloid leukemia (AML) including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, and immune checkpoint blockade via antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed-death 1 (PD-1).Recent findingsThe stellar success of immune therapies that harness the power of T cells in solid tumors and an improved understanding of the immune system in patients with hematologic malignancies have resulted in major efforts to develop immune therapies for the treatment of patients with AML. Monoclonal antibodies in AML therapy include naked antibodies against AML surface antigens such as CD33 (e.g. lintuzumab) or CD38 (e.g. daratumumab), antibodies conjugated to toxins in various anti-CD33 (gemtuzumab ozogamicin, SGN33A, IMGN779) and anti-CD123 (SL-401, SGN-CD123A) formulations, and antibodies conjugated to radioactive particles such as 131I or 225Ac-labeled anti-CD33 or anti-CD45 antibodies. Additional antigenic targets of interest in AML include CLL1, CD38, CD25, TIM3, FLT3, and others. Approaches to harness the body's own T cells against AML include antibodies that recruit and induce cytotoxicity of tumor cells by T cells (bispecific T-cell engager [BiTE] such as CD33 x CD3 (e.g. AMG 330) or CD123 x CD3 (e.g. flotetuzumab, JNJ-63709178) or antibodies that block immune checkpoint receptors CTLA4 (e.g. ipilimumab) or PD1/PD-L1 (e.g. nivolumab, pembrolizumab, avelumab) on T cells, unleashing the patients’ T cells against leukemic cells.SummaryThe ongoing trials and well designed correlative interrogation of the immune system in patients treated on such trials will further enhance our understanding and clinical application of immune therapies as single-agent and combination approaches for the treatment of AML.

Journal

Current Opinion in HematologyWolters Kluwer Health

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off