Identification of gene expression models for laryngeal squamous cell carcinoma using co-expression network analysis

Identification of gene expression models for laryngeal squamous cell carcinoma using... AbstractOne of the most common head and neck cancers is laryngeal squamous cell carcinoma (LSCC). LSCC exhibits high mortality rates and has a poor prognosis. The molecular mechanisms leading to the development and progression of LSCC are not entirely clear despite genetic and therapeutic advances and increased survival rates. In this study, a total of 116 differentially expressed genes (DEGs), including 11 upregulated genes and 105 downregulated genes, were screened from LSCC samples and compared with adjacent noncancerous. Statistically significant differences (log 2-fold difference > 0.5 and adjusted P-value < .05) were found in this study in the expression between tumor and nontumor larynx tissue samples. Nine cancer hub genes were found to have a high predictive power to distinguish between tumor and nontumor larynx tissue samples. Interestingly, they also appear to contribute to the progression of LSCC and malignancy via the Jak-STAT signaling pathway and focal adhesion. The model could separate patients into high-risk and low-risk groups successfully when only using the expression level of mRNA signatures. A total of 4 modules (blue, gray, turquoise, and yellow) were screened for the DEGs in the weighted co-expression network. The blue model includes cancer-specific pathways such as pancreatic cancer, bladder cancer, nonsmall cell lung cancer, colorectal cancer, glioma, Hippo signaling pathway, melanoma, chronic myeloid leukemia, prostate cancer, and proteoglycans in cancer. Endocrine resistance (CCND1, RAF1, RB1, and SMAD2) and Hippo signaling pathway (CCND1, LATS1, SMAD2, and TP53BP2) could be of importance in LSCC, because they had high connectivity degrees in the blue module. Results from this study provide a powerful biomarker discovery platform to increase understanding of the progression of LSCC and to reveal potential therapeutic targets in the treatment of LSCC. Improved monitoring of LSCC and resulting improvement of treatment of LSCC might result from this information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Medicine Wolters Kluwer Health

Identification of gene expression models for laryngeal squamous cell carcinoma using co-expression network analysis

Loading next page...
 
/lp/wolters_kluwer/identification-of-gene-expression-models-for-laryngeal-squamous-cell-emaO6Q6c1F
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.
ISSN
0025-7974
eISSN
1536-5964
D.O.I.
10.1097/MD.0000000000009738
Publisher site
See Article on Publisher Site

Abstract

AbstractOne of the most common head and neck cancers is laryngeal squamous cell carcinoma (LSCC). LSCC exhibits high mortality rates and has a poor prognosis. The molecular mechanisms leading to the development and progression of LSCC are not entirely clear despite genetic and therapeutic advances and increased survival rates. In this study, a total of 116 differentially expressed genes (DEGs), including 11 upregulated genes and 105 downregulated genes, were screened from LSCC samples and compared with adjacent noncancerous. Statistically significant differences (log 2-fold difference > 0.5 and adjusted P-value < .05) were found in this study in the expression between tumor and nontumor larynx tissue samples. Nine cancer hub genes were found to have a high predictive power to distinguish between tumor and nontumor larynx tissue samples. Interestingly, they also appear to contribute to the progression of LSCC and malignancy via the Jak-STAT signaling pathway and focal adhesion. The model could separate patients into high-risk and low-risk groups successfully when only using the expression level of mRNA signatures. A total of 4 modules (blue, gray, turquoise, and yellow) were screened for the DEGs in the weighted co-expression network. The blue model includes cancer-specific pathways such as pancreatic cancer, bladder cancer, nonsmall cell lung cancer, colorectal cancer, glioma, Hippo signaling pathway, melanoma, chronic myeloid leukemia, prostate cancer, and proteoglycans in cancer. Endocrine resistance (CCND1, RAF1, RB1, and SMAD2) and Hippo signaling pathway (CCND1, LATS1, SMAD2, and TP53BP2) could be of importance in LSCC, because they had high connectivity degrees in the blue module. Results from this study provide a powerful biomarker discovery platform to increase understanding of the progression of LSCC and to reveal potential therapeutic targets in the treatment of LSCC. Improved monitoring of LSCC and resulting improvement of treatment of LSCC might result from this information.

Journal

MedicineWolters Kluwer Health

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off