Epigenetics of inflammatory arthritis

Epigenetics of inflammatory arthritis Purpose of reviewAberrant epigenetic changes in DNA methylation, histone marks, and noncoding RNA expression regulate the pathogenesis of many rheumatic diseases. The present article will review the recent advances in the epigenetic profile of inflammatory arthritis and discuss diagnostic biomarkers and potential therapeutic targets.Recent findingsMethylation signatures of fibroblast-like synoviocytes not only distinguish rheumatoid arthritis (RA) and osteoarthritis (OA), but also early RA from late RA or juvenile idiopathic arthritis. Methylation patterns are also specific to individual joint locations, which might explain the distribution of joint involvement in some rheumatic diseases. Hypomethylation in systemic lupus erythematosus (SLE) T cells is, in part, because of active demethylation and 5-hydroxymethylation. The methylation status of some genes in SLE is associated with disease severity and has potential as a diagnostic marker. An integrative analysis of OA methylome, transcriptome, and proteome in chondrocytes has identified multiple-evidence genes that might be evaluated for therapeutic potential. Class-specific histone deacetylase inhibitors are being evaluated for therapy in inflammatory arthritis.SummaryDisease pathogenesis is regulated by the interplay of genetics, environment, and epigenetics. Understanding how these mechanisms regulate cell function in health and disease has implications for individualized therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Opinion in Rheumatology Wolters Kluwer Health

Epigenetics of inflammatory arthritis

Loading next page...
 
/lp/wolters_kluwer/epigenetics-of-inflammatory-arthritis-yPTbgCO9gH
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
1040-8711
eISSN
1531-6963
D.O.I.
10.1097/BOR.0000000000000471
Publisher site
See Article on Publisher Site

Abstract

Purpose of reviewAberrant epigenetic changes in DNA methylation, histone marks, and noncoding RNA expression regulate the pathogenesis of many rheumatic diseases. The present article will review the recent advances in the epigenetic profile of inflammatory arthritis and discuss diagnostic biomarkers and potential therapeutic targets.Recent findingsMethylation signatures of fibroblast-like synoviocytes not only distinguish rheumatoid arthritis (RA) and osteoarthritis (OA), but also early RA from late RA or juvenile idiopathic arthritis. Methylation patterns are also specific to individual joint locations, which might explain the distribution of joint involvement in some rheumatic diseases. Hypomethylation in systemic lupus erythematosus (SLE) T cells is, in part, because of active demethylation and 5-hydroxymethylation. The methylation status of some genes in SLE is associated with disease severity and has potential as a diagnostic marker. An integrative analysis of OA methylome, transcriptome, and proteome in chondrocytes has identified multiple-evidence genes that might be evaluated for therapeutic potential. Class-specific histone deacetylase inhibitors are being evaluated for therapy in inflammatory arthritis.SummaryDisease pathogenesis is regulated by the interplay of genetics, environment, and epigenetics. Understanding how these mechanisms regulate cell function in health and disease has implications for individualized therapy.

Journal

Current Opinion in RheumatologyWolters Kluwer Health

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off