Effects of stressor controllability on transcriptional levels of c-fos, Arc, and brain-derived neurotrophic factor in mouse amygdala and medial prefrontal cortex

Effects of stressor controllability on transcriptional levels of c-fos, Arc, and brain-derived... Controllability is an important factor in determining stress outcomes. Uncontrollable stress is associated with the development of psychopathology such as post-traumatic stress disorder, whereas controllable stress is associated with adaptive stress responses and positive outcomes. In this study, we investigated how controllability affects poststress neurobiology by assessing transcriptional levels of activity-dependent genes in medial prefrontal cortex (mPFC) and amygdala, regions important in mediating stress outcomes. Mice were subjected to either escapable shock (ES) or yoked inescapable shock (IS) as models of controllable and uncontrollable stress, respectively. Immediately (0 h) or at 2 h after shock training (20 trials; 0.5 mA, 5.0 s maximum duration; 1.0 min interstimulus interval), mice were killed, and we interrogated expression levels of the immediate-early genes, c-fos and Arc, and a delayed primary response gene, brain-derived neurotrophic factor, in mPFC, amygdala, and somatosensory cortex (a control region), using real-time reverse transcription quantitative PCR (RT2 qPCR). We found ES-associated up-regulation of brain-derived neurotrophic factor in amygdala as well as in mPFC. IS suppressed c-fos in mPFC (0 h) but induced more Arc in amygdala (2 h) in comparison with ES. Freezing, an index of fear memory, and serum level corticosterone, an index of the stress response, did not differ between mice trained with ES or IS. The data are discussed with respect to the potential functional involvements of the amygdala and mPFC in mediating differential outcomes of controllable and uncontrollable stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroreport Wolters Kluwer Health

Effects of stressor controllability on transcriptional levels of c-fos, Arc, and brain-derived neurotrophic factor in mouse amygdala and medial prefrontal cortex

Loading next page...
 
/lp/wolters_kluwer/effects-of-stressor-controllability-on-transcriptional-levels-of-c-fos-pingVVb7b4
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
0959-4965
eISSN
1473-558X
D.O.I.
10.1097/WNR.0000000000000919
Publisher site
See Article on Publisher Site

Abstract

Controllability is an important factor in determining stress outcomes. Uncontrollable stress is associated with the development of psychopathology such as post-traumatic stress disorder, whereas controllable stress is associated with adaptive stress responses and positive outcomes. In this study, we investigated how controllability affects poststress neurobiology by assessing transcriptional levels of activity-dependent genes in medial prefrontal cortex (mPFC) and amygdala, regions important in mediating stress outcomes. Mice were subjected to either escapable shock (ES) or yoked inescapable shock (IS) as models of controllable and uncontrollable stress, respectively. Immediately (0 h) or at 2 h after shock training (20 trials; 0.5 mA, 5.0 s maximum duration; 1.0 min interstimulus interval), mice were killed, and we interrogated expression levels of the immediate-early genes, c-fos and Arc, and a delayed primary response gene, brain-derived neurotrophic factor, in mPFC, amygdala, and somatosensory cortex (a control region), using real-time reverse transcription quantitative PCR (RT2 qPCR). We found ES-associated up-regulation of brain-derived neurotrophic factor in amygdala as well as in mPFC. IS suppressed c-fos in mPFC (0 h) but induced more Arc in amygdala (2 h) in comparison with ES. Freezing, an index of fear memory, and serum level corticosterone, an index of the stress response, did not differ between mice trained with ES or IS. The data are discussed with respect to the potential functional involvements of the amygdala and mPFC in mediating differential outcomes of controllable and uncontrollable stress.

Journal

NeuroreportWolters Kluwer Health

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off