Blood, tissue and imaging biomarkers in calcific aortic valve stenosis: past, present and future

Blood, tissue and imaging biomarkers in calcific aortic valve stenosis: past, present and future Purpose of reviewCalcific aortic valve stenosis is the most prevalent valvular heart disease in the high-income countries. To this date, no medical therapy has been proven to prevent or to stop the progression of aortic valve stenosis. The physiopathology of aortic valve stenosis is highly complex and involves several signalling pathways, as well as genetic related factors, which delay the elaboration of effective pharmacotherapies. Moreover, it is difficult to predict accurately the progression of the valve stenosis and finding the optimal timing for aortic valve replacement remains challenging. Therefore, the present review makes an inventory of the most recent and promising circulating and imaging biomarkers related to the underlying mechanisms involved in the physiopathology of aortic valve stenosis, as well as the biomarkers associated with the left ventricular (LV) remodelling and subsequent dysfunction in patients with aortic valve stenosis.Recent findingsOver the last decade, several blood, tissue and imaging biomarkers have been investigated in aortic valve stenosis patients. At the aortic valve level, these biomarkers are mostly associated and/or involved with processes such as lipid infiltration and oxidation, chronic inflammation and fibrocalcific remodelling of the valve. Moreover, recent findings suggest that aging and sex hormones might interact with these multiple processes. Several studies demonstrated the usefulness of circulating biomarkers such as lipoprotein(a), brain natriuretic peptides and high-sensitivity cardiac troponin, which are very close to clinical routine. Furthermore, noninvasive imaging biomarkers including positron emission tomography and cardiac magnetic resonance, which provide a detailed view of the disease activity within the aortic valve and its repercussion on the left ventricle, may help to improve the understanding of aortic valve stenosis physiopathology and enhance the risk stratification. Other biomarkers such as von Willebrand factor and microRNAs are promising but further studies are needed to prove their additive value in aortic valve stenosis.SummaryMost of the biomarkers are used in research and thus, are still being investigated. However, some biomarkers including plasma level of lipoprotein(a), 18F-sodium fluoride, brain natriuretic peptides and high-sensitivity cardiac troponin can be or are very close to be used for the clinical management of patients with aortic valve stenosis. Moreover, a multibiomarker approach might provide a more global view of the disease activity and improve the management strategies of these patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Opinion in Cardiology Wolters Kluwer Health

Blood, tissue and imaging biomarkers in calcific aortic valve stenosis: past, present and future

Loading next page...
 
/lp/wolters_kluwer/blood-tissue-and-imaging-biomarkers-in-calcific-aortic-valve-stenosis-YwL3eBsDnS
Publisher
Wolters Kluwer
Copyright
Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
ISSN
0268-4705
eISSN
1531-7080
D.O.I.
10.1097/HCO.0000000000000487
Publisher site
See Article on Publisher Site

Abstract

Purpose of reviewCalcific aortic valve stenosis is the most prevalent valvular heart disease in the high-income countries. To this date, no medical therapy has been proven to prevent or to stop the progression of aortic valve stenosis. The physiopathology of aortic valve stenosis is highly complex and involves several signalling pathways, as well as genetic related factors, which delay the elaboration of effective pharmacotherapies. Moreover, it is difficult to predict accurately the progression of the valve stenosis and finding the optimal timing for aortic valve replacement remains challenging. Therefore, the present review makes an inventory of the most recent and promising circulating and imaging biomarkers related to the underlying mechanisms involved in the physiopathology of aortic valve stenosis, as well as the biomarkers associated with the left ventricular (LV) remodelling and subsequent dysfunction in patients with aortic valve stenosis.Recent findingsOver the last decade, several blood, tissue and imaging biomarkers have been investigated in aortic valve stenosis patients. At the aortic valve level, these biomarkers are mostly associated and/or involved with processes such as lipid infiltration and oxidation, chronic inflammation and fibrocalcific remodelling of the valve. Moreover, recent findings suggest that aging and sex hormones might interact with these multiple processes. Several studies demonstrated the usefulness of circulating biomarkers such as lipoprotein(a), brain natriuretic peptides and high-sensitivity cardiac troponin, which are very close to clinical routine. Furthermore, noninvasive imaging biomarkers including positron emission tomography and cardiac magnetic resonance, which provide a detailed view of the disease activity within the aortic valve and its repercussion on the left ventricle, may help to improve the understanding of aortic valve stenosis physiopathology and enhance the risk stratification. Other biomarkers such as von Willebrand factor and microRNAs are promising but further studies are needed to prove their additive value in aortic valve stenosis.SummaryMost of the biomarkers are used in research and thus, are still being investigated. However, some biomarkers including plasma level of lipoprotein(a), 18F-sodium fluoride, brain natriuretic peptides and high-sensitivity cardiac troponin can be or are very close to be used for the clinical management of patients with aortic valve stenosis. Moreover, a multibiomarker approach might provide a more global view of the disease activity and improve the management strategies of these patients.

Journal

Current Opinion in CardiologyWolters Kluwer Health

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off