Zinc finger gene nolz1 regulates the formation of retinal progenitor cells and suppresses the Lim3/Lhx3 phenotype of retinal bipolar cells in chicken retina

Zinc finger gene nolz1 regulates the formation of retinal progenitor cells and suppresses the... Background: The zinc‐finger transcription factor Nolz1 regulates spinal cord neuron development by interacting with the transcription factors Isl1, Lim1, and Lim3, which are also important for photoreceptors, horizontal and bipolar cells during retinal development. We, therefore, studied Nolz1 during retinal development. Results: Nolz1 expression was seen in two waves during development: one early (peak at embryonic day 3–4.5) in retinal progenitors and one late (embryonic day 8) in newly differentiated cells in the inner nuclear layer. Overexpression and knockdown showed that Nolz1 decreases proliferation and stimulates cell cycle withdrawal in retinal progenitors with effects on the generation of retinal ganglion cells, photoreceptors, and horizontal cells without triggering apoptosis. Overexpression of Nolz1 gave more p27 positive cells. Sustained overexpression of Nolz1 in the retina gave fewer Lim3/Lhx3 bipolar cells. Conclusions: We conclude that Nolz1 has multiple functions during development and suggest a mechanism in which Nolz1 initially regulates the proliferation state of the retinal progenitor cells and then acts as a repressor that suppresses the Lim3/Lhx3 bipolar cell phenotype at the time of bipolar cell differentiation. Developmental Dynamics 247:630–641, 2018. © 2017 Wiley Periodicals, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Developmental Dynamics Wiley

Zinc finger gene nolz1 regulates the formation of retinal progenitor cells and suppresses the Lim3/Lhx3 phenotype of retinal bipolar cells in chicken retina

Loading next page...
 
/lp/wiley/zinc-finger-gene-nolz1-regulates-the-formation-of-retinal-progenitor-QD4ZHZ0IGQ
Publisher
Wiley
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
1058-8388
eISSN
1097-0177
D.O.I.
10.1002/dvdy.24607
Publisher site
See Article on Publisher Site

Abstract

Background: The zinc‐finger transcription factor Nolz1 regulates spinal cord neuron development by interacting with the transcription factors Isl1, Lim1, and Lim3, which are also important for photoreceptors, horizontal and bipolar cells during retinal development. We, therefore, studied Nolz1 during retinal development. Results: Nolz1 expression was seen in two waves during development: one early (peak at embryonic day 3–4.5) in retinal progenitors and one late (embryonic day 8) in newly differentiated cells in the inner nuclear layer. Overexpression and knockdown showed that Nolz1 decreases proliferation and stimulates cell cycle withdrawal in retinal progenitors with effects on the generation of retinal ganglion cells, photoreceptors, and horizontal cells without triggering apoptosis. Overexpression of Nolz1 gave more p27 positive cells. Sustained overexpression of Nolz1 in the retina gave fewer Lim3/Lhx3 bipolar cells. Conclusions: We conclude that Nolz1 has multiple functions during development and suggest a mechanism in which Nolz1 initially regulates the proliferation state of the retinal progenitor cells and then acts as a repressor that suppresses the Lim3/Lhx3 bipolar cell phenotype at the time of bipolar cell differentiation. Developmental Dynamics 247:630–641, 2018. © 2017 Wiley Periodicals, Inc.

Journal

Developmental DynamicsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off