Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP

Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP The neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) induces selective loss of dopaminergic neurons in the mammalian midbrain, eliciting symptoms characteristic of Parkinson's disease. By exploiting the advantages of zebrafish embryos, we report here that dopaminergic neurons in this species are specifically perturbed when exposed to MPTP. In contrast to mammals, the zebrafish does not possess a midbrain dopaminergic system. Instead, the main population of neurons expressing the dopamine transporter is located in the posterior tuberculum of the diencephalon. Exposure of embryos to MPTP led to a pronounced reduction in the number of dopaminergic cells in the diencephalon. This effect can be reversed by deprenyl, a specific inhibitor of monoamine oxidase B that catalyses the conversion of MPTP to its active metabolite, MPP+. Similarly, direct treatment of embryos with MPP+ abolished the diencephalic dopaminergic neurons. These larvae also demonstrated behavioural defects in swimming responses. Thus, dopaminergic neurons in the posterior tuberculum of the zebrafish may be homologous to the midbrain dopaminergic system of mammals. In addition, the mechanism behind the loss of dopaminergic neurons following pharmacological perturbation may be conserved among vertebrates and suggest that the zebrafish can be used as a convenient and economical system to study the pathogenesis of Parkinson's disease and for testing potential therapeutic strategies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP

Loading next page...
 
/lp/wiley/zebrafish-embryos-are-susceptible-to-the-dopaminergic-neurotoxin-mptp-qdw0og3Vy0
Publisher
Wiley
Copyright
Copyright © 2005 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
DOI
10.1111/j.1460-9568.2005.03988.x
Publisher site
See Article on Publisher Site

Abstract

The neurotoxin 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) induces selective loss of dopaminergic neurons in the mammalian midbrain, eliciting symptoms characteristic of Parkinson's disease. By exploiting the advantages of zebrafish embryos, we report here that dopaminergic neurons in this species are specifically perturbed when exposed to MPTP. In contrast to mammals, the zebrafish does not possess a midbrain dopaminergic system. Instead, the main population of neurons expressing the dopamine transporter is located in the posterior tuberculum of the diencephalon. Exposure of embryos to MPTP led to a pronounced reduction in the number of dopaminergic cells in the diencephalon. This effect can be reversed by deprenyl, a specific inhibitor of monoamine oxidase B that catalyses the conversion of MPTP to its active metabolite, MPP+. Similarly, direct treatment of embryos with MPP+ abolished the diencephalic dopaminergic neurons. These larvae also demonstrated behavioural defects in swimming responses. Thus, dopaminergic neurons in the posterior tuberculum of the zebrafish may be homologous to the midbrain dopaminergic system of mammals. In addition, the mechanism behind the loss of dopaminergic neurons following pharmacological perturbation may be conserved among vertebrates and suggest that the zebrafish can be used as a convenient and economical system to study the pathogenesis of Parkinson's disease and for testing potential therapeutic strategies.

Journal

European Journal of NeuroscienceWiley

Published: Mar 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off