Wire bonding as a cell interconnection technique for polycrystalline silicon thin‐film solar cells on glass

Wire bonding as a cell interconnection technique for polycrystalline silicon thin‐film solar... The interconnection of solar cells is a critical part of photovoltaic module fabrication. In this paper, a high‐yield, low‐cost method for interconnecting polycrystalline silicon thin‐film solar cells on glass is presented. The method consists of forming adjacent, electrically isolated groves across the cells using laser scribing, and then forming wire bonds over each laser scribe, resulting in series interconnection of the individual solar cells. Wire bonds are also used to connect the first and last solar cell in the string to external (tabbing) leads, forming a mini‐module. A layer of white paint is then applied, which acts as both an encapsulation layer and an additional back surface reflector. Using this method, an 8·3% efficient mini‐module has been fabricated. By exploiting recent developments in wire bonding technology, it appears that this process can be automated and will be capable of forming solar cell interconnections on large‐area modules within relatively short processing times (∼10 min for a 1 m2 module). Copyright © 2010 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Progress in Photovoltaics: Research & Applications Wiley

Wire bonding as a cell interconnection technique for polycrystalline silicon thin‐film solar cells on glass

Loading next page...
 
/lp/wiley/wire-bonding-as-a-cell-interconnection-technique-for-polycrystalline-QsMOfdnzPg
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2010 John Wiley & Sons, Ltd.
ISSN
1062-7995
eISSN
1099-159X
D.O.I.
10.1002/pip.947
Publisher site
See Article on Publisher Site

Abstract

The interconnection of solar cells is a critical part of photovoltaic module fabrication. In this paper, a high‐yield, low‐cost method for interconnecting polycrystalline silicon thin‐film solar cells on glass is presented. The method consists of forming adjacent, electrically isolated groves across the cells using laser scribing, and then forming wire bonds over each laser scribe, resulting in series interconnection of the individual solar cells. Wire bonds are also used to connect the first and last solar cell in the string to external (tabbing) leads, forming a mini‐module. A layer of white paint is then applied, which acts as both an encapsulation layer and an additional back surface reflector. Using this method, an 8·3% efficient mini‐module has been fabricated. By exploiting recent developments in wire bonding technology, it appears that this process can be automated and will be capable of forming solar cell interconnections on large‐area modules within relatively short processing times (∼10 min for a 1 m2 module). Copyright © 2010 John Wiley & Sons, Ltd.

Journal

Progress in Photovoltaics: Research & ApplicationsWiley

Published: May 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off