What Controls ENSO‐Amplitude Diversity in Climate Models?

What Controls ENSO‐Amplitude Diversity in Climate Models? Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO) (ENSO amplitude). Here we investigate ENSO‐amplitude diversity in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a two‐dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T) and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to ENSO‐amplitude diversity originates from stochastic forcing. Further, significant interactions exist between the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO‐amplitude variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

What Controls ENSO‐Amplitude Diversity in Climate Models?

Loading next page...
 
/lp/wiley/what-controls-enso-amplitude-diversity-in-climate-models-jblsw4ZIm3
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076849
Publisher site
See Article on Publisher Site

Abstract

Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO) (ENSO amplitude). Here we investigate ENSO‐amplitude diversity in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a two‐dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T) and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to ENSO‐amplitude diversity originates from stochastic forcing. Further, significant interactions exist between the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO‐amplitude variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial