What Controls ENSO‐Amplitude Diversity in Climate Models?

What Controls ENSO‐Amplitude Diversity in Climate Models? Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO) (ENSO amplitude). Here we investigate ENSO‐amplitude diversity in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a two‐dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T) and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to ENSO‐amplitude diversity originates from stochastic forcing. Further, significant interactions exist between the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO‐amplitude variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

What Controls ENSO‐Amplitude Diversity in Climate Models?

Loading next page...
 
/lp/wiley/what-controls-enso-amplitude-diversity-in-climate-models-jblsw4ZIm3
Publisher
Wiley
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076849
Publisher site
See Article on Publisher Site

Abstract

Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO) (ENSO amplitude). Here we investigate ENSO‐amplitude diversity in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a two‐dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T) and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to ENSO‐amplitude diversity originates from stochastic forcing. Further, significant interactions exist between the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO‐amplitude variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off