Water quality modeling: A review of the analysis of uncertainty

Water quality modeling: A review of the analysis of uncertainty This paper reviews the role of uncertainty in the identification of mathematical models of water quality and in the application of these models to problems of prediction. More specifically, four problem areas are examined in detail: uncertainty about model structure, uncertainty in the estimated model parameter values, the propagation of prediction errors, and the design of experiments in order to reduce the critical uncertainties associated with a model. The review is rather lengthy, and it has therefore been prepared in effect as two papers. There is a shorter, largely nontechnical version, which gives a quick impression of the current and future issues in the analysis of uncertainty in water quality modeling. Enclosed by this shorter discussion is the main body of the review dealing in turn with (1) identifiability and experimental design, (2) the generation of preliminary model hypotheses under conditions of sparse, grossly uncertain field data, (3) the selection and evaluation of model structure, (4) parameter estimation (model calibration), (5) checks and balances on the identified model, i.e., model “verification” and model discrimination, and (6) prediction error propagation. Much time is spent in discussing the algorithms of system identification, in particular, the methods of recursive estimation, and in relating these algorithms and the subject of identification to the problems of prediction uncertainty and first‐order error analysis. There are two obvious omissions from the review. It is not concerned primarily with either the development and solution of stochastic differential equations or the issue of decision making under uncertainty, although clearly some reference must be made to these topics. In brief, the review concludes (not surprisingly) that much work has been done on the analysis of uncertainty in the development of mathematical models of water quality, and much remains to be done. A lack of model identifiability has been an outstanding difficulty in the interpretation and explanation of past observed system behavior, and there is ample evidence to show that the “larger,” more “comprehensive” models are easily capable of generating highly uncertain predictions of future behavior. For the future of the subject, it is speculated that there is the possibility of progress in the development of novel algorithms for model structure identification, a need for new questions to be posed in the problem of prediction, and a distinct challenge to the conventional views of this review in the new forms of knowledge representation and manipulation now emerging from the field of artificial intelligence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Water quality modeling: A review of the analysis of uncertainty

Water Resources Research, Volume 23 (8) – Aug 1, 1987

Loading next page...
 
/lp/wiley/water-quality-modeling-a-review-of-the-analysis-of-uncertainty-caBPRuLljf
Publisher
Wiley
Copyright
Copyright © 1987 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/WR023i008p01393
Publisher site
See Article on Publisher Site

Abstract

This paper reviews the role of uncertainty in the identification of mathematical models of water quality and in the application of these models to problems of prediction. More specifically, four problem areas are examined in detail: uncertainty about model structure, uncertainty in the estimated model parameter values, the propagation of prediction errors, and the design of experiments in order to reduce the critical uncertainties associated with a model. The review is rather lengthy, and it has therefore been prepared in effect as two papers. There is a shorter, largely nontechnical version, which gives a quick impression of the current and future issues in the analysis of uncertainty in water quality modeling. Enclosed by this shorter discussion is the main body of the review dealing in turn with (1) identifiability and experimental design, (2) the generation of preliminary model hypotheses under conditions of sparse, grossly uncertain field data, (3) the selection and evaluation of model structure, (4) parameter estimation (model calibration), (5) checks and balances on the identified model, i.e., model “verification” and model discrimination, and (6) prediction error propagation. Much time is spent in discussing the algorithms of system identification, in particular, the methods of recursive estimation, and in relating these algorithms and the subject of identification to the problems of prediction uncertainty and first‐order error analysis. There are two obvious omissions from the review. It is not concerned primarily with either the development and solution of stochastic differential equations or the issue of decision making under uncertainty, although clearly some reference must be made to these topics. In brief, the review concludes (not surprisingly) that much work has been done on the analysis of uncertainty in the development of mathematical models of water quality, and much remains to be done. A lack of model identifiability has been an outstanding difficulty in the interpretation and explanation of past observed system behavior, and there is ample evidence to show that the “larger,” more “comprehensive” models are easily capable of generating highly uncertain predictions of future behavior. For the future of the subject, it is speculated that there is the possibility of progress in the development of novel algorithms for model structure identification, a need for new questions to be posed in the problem of prediction, and a distinct challenge to the conventional views of this review in the new forms of knowledge representation and manipulation now emerging from the field of artificial intelligence.

Journal

Water Resources ResearchWiley

Published: Aug 1, 1987

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off