Visual transduction in cones of the monkey Macaca fascicularis.

Visual transduction in cones of the monkey Macaca fascicularis. 1. Visual transduction in macaque cones was studied by measuring the membrane current of single outer segments projecting from small pieces of retina. 2. The response to a brief flash of light was diphasic and resembled the output of a bandpass filter with a peak frequency near 5 Hz. After the initial reduction in dark current there was a rebound increase which resulted from an increase in the number of open light‐sensitive channels. The response to a step of light consisted of a prominent initial peak followed by a steady phase of smaller amplitude. 3. Responses to dim light were linear and time‐invariant, suggesting that responses to single photons were linearly additive. From the flash sensitivity and the effective collecting area the peak amplitude of the single photon response was estimated as about 30 fA. 4. With flashes of increasing strength the photocurrent amplitude usually saturated along a curve that was gentler than an exponential but steeper than a Michaelis relation. The response reached the half‐saturating amplitude at roughly 650 photoisomerizations. 5. The response‐intensity relation was flatter in the steady state than shortly after a light step was turned on, indicating that bright light desensitized the transduction with a delay. This desensitization was not due to a reduction in pigment content. In the steady state, a background of intensity I lowered the sensitivity to a weak incremental test flash by a factor 1/(1 + I/IO), where IO was about 2.6 x 10(4) photoisomerizations s‐1, or about 3.3 log trolands for the red‐ and green‐sensitive cones. 6. Bleaching exposures produced permanent reductions in flash sensitivity but had little effect on the kinetics or saturating amplitude of subsequent flash responses. The sensitivity reductions were consistent with the expected reductions in visual pigment content and gave photosensitivities of about 8 x 10(‐9) microns2 (free solution value) for the red‐ and green‐sensitive pigments. During a steady bleaching exposure the final exponential decline of the photocurrent had a rate constant given by the product of the light intensity and the photosensitivity. 7. In some cells it was possible to measure a light‐induced increase in current noise. The power spectrum of the noise resembled the spectrum of the dim flash response and the magnitude of the noise was consistent with a single photon response roughly 20 fA in size. 8. The membrane current recorded in darkness was noisy, with a variance near 0.12 pA2 in the band 0‐20 Hz.(ABSTRACT TRUNCATED AT 400 WORDS) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Visual transduction in cones of the monkey Macaca fascicularis.

Loading next page...
 
/lp/wiley/visual-transduction-in-cones-of-the-monkey-macaca-fascicularis-0UvujbKS5o
Publisher site
See Article on Publisher Site

Abstract

1. Visual transduction in macaque cones was studied by measuring the membrane current of single outer segments projecting from small pieces of retina. 2. The response to a brief flash of light was diphasic and resembled the output of a bandpass filter with a peak frequency near 5 Hz. After the initial reduction in dark current there was a rebound increase which resulted from an increase in the number of open light‐sensitive channels. The response to a step of light consisted of a prominent initial peak followed by a steady phase of smaller amplitude. 3. Responses to dim light were linear and time‐invariant, suggesting that responses to single photons were linearly additive. From the flash sensitivity and the effective collecting area the peak amplitude of the single photon response was estimated as about 30 fA. 4. With flashes of increasing strength the photocurrent amplitude usually saturated along a curve that was gentler than an exponential but steeper than a Michaelis relation. The response reached the half‐saturating amplitude at roughly 650 photoisomerizations. 5. The response‐intensity relation was flatter in the steady state than shortly after a light step was turned on, indicating that bright light desensitized the transduction with a delay. This desensitization was not due to a reduction in pigment content. In the steady state, a background of intensity I lowered the sensitivity to a weak incremental test flash by a factor 1/(1 + I/IO), where IO was about 2.6 x 10(4) photoisomerizations s‐1, or about 3.3 log trolands for the red‐ and green‐sensitive cones. 6. Bleaching exposures produced permanent reductions in flash sensitivity but had little effect on the kinetics or saturating amplitude of subsequent flash responses. The sensitivity reductions were consistent with the expected reductions in visual pigment content and gave photosensitivities of about 8 x 10(‐9) microns2 (free solution value) for the red‐ and green‐sensitive pigments. During a steady bleaching exposure the final exponential decline of the photocurrent had a rate constant given by the product of the light intensity and the photosensitivity. 7. In some cells it was possible to measure a light‐induced increase in current noise. The power spectrum of the noise resembled the spectrum of the dim flash response and the magnitude of the noise was consistent with a single photon response roughly 20 fA in size. 8. The membrane current recorded in darkness was noisy, with a variance near 0.12 pA2 in the band 0‐20 Hz.(ABSTRACT TRUNCATED AT 400 WORDS)

Journal

The Journal of PhysiologyWiley

Published: Aug 1, 1990

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off