Variance and Rate‐of‐Change as Early Warning Signals for a Critical Transition in an Aquatic Ecosystem State: A Test Case From Tasmania, Australia

Variance and Rate‐of‐Change as Early Warning Signals for a Critical Transition in an Aquatic... Critical transitions in ecosystem states are often sudden and unpredictable. Consequently, there is a concerted effort to identify measurable early warning signals (EWS) for these important events. Aquatic ecosystems provide an opportunity to observe critical transitions due to their high sensitivity and rapid response times. Using palaeoecological techniques, we can measure properties of time series data to determine if critical transitions are preceded by any measurable ecosystem metrics, that is, identify EWS. Using a suite of palaeoenvironmental data spanning the last 2,400 years (diatoms, pollen, geochemistry, and charcoal influx), we assess whether a critical transition in diatom community structure was preceded by measurable EWS. Lake Vera, in the temperate rain forest of western Tasmania, Australia, has a diatom community dominated by Discostella stelligera and undergoes an abrupt compositional shift at ca. 820 cal yr BP that is concomitant with increased fire disturbance of the local vegetation. This shift is manifest as a transition from less oligotrophic acidic diatom flora (Achnanthidium minutissimum, Brachysira styriaca, and Fragilaria capucina) to more oligotrophic acidic taxa (Frustulia elongatissima, Eunotia diodon, and Gomphonema multiforme). We observe a marked increase in compositional variance and rate‐of‐change prior to this critical transition, revealing these metrics are useful EWS in this system. Interestingly, vegetation remains complacent to fire disturbance until after the shift in the diatom community. Disturbance taxa invade and the vegetation system experiences an increase in both compositional variance and rate‐of‐change. These trends imply an approaching critical transition in the vegetation and the probable collapse of the local rain forest system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Biogeosciences Wiley

Variance and Rate‐of‐Change as Early Warning Signals for a Critical Transition in an Aquatic Ecosystem State: A Test Case From Tasmania, Australia

Loading next page...
 
/lp/wiley/variance-and-rate-of-change-as-early-warning-signals-for-a-critical-44NH5my5D0
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-8953
eISSN
2169-8961
D.O.I.
10.1002/2017JG004135
Publisher site
See Article on Publisher Site

Abstract

Critical transitions in ecosystem states are often sudden and unpredictable. Consequently, there is a concerted effort to identify measurable early warning signals (EWS) for these important events. Aquatic ecosystems provide an opportunity to observe critical transitions due to their high sensitivity and rapid response times. Using palaeoecological techniques, we can measure properties of time series data to determine if critical transitions are preceded by any measurable ecosystem metrics, that is, identify EWS. Using a suite of palaeoenvironmental data spanning the last 2,400 years (diatoms, pollen, geochemistry, and charcoal influx), we assess whether a critical transition in diatom community structure was preceded by measurable EWS. Lake Vera, in the temperate rain forest of western Tasmania, Australia, has a diatom community dominated by Discostella stelligera and undergoes an abrupt compositional shift at ca. 820 cal yr BP that is concomitant with increased fire disturbance of the local vegetation. This shift is manifest as a transition from less oligotrophic acidic diatom flora (Achnanthidium minutissimum, Brachysira styriaca, and Fragilaria capucina) to more oligotrophic acidic taxa (Frustulia elongatissima, Eunotia diodon, and Gomphonema multiforme). We observe a marked increase in compositional variance and rate‐of‐change prior to this critical transition, revealing these metrics are useful EWS in this system. Interestingly, vegetation remains complacent to fire disturbance until after the shift in the diatom community. Disturbance taxa invade and the vegetation system experiences an increase in both compositional variance and rate‐of‐change. These trends imply an approaching critical transition in the vegetation and the probable collapse of the local rain forest system.

Journal

Journal of Geophysical Research: BiogeosciencesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off