Variability in the performance of juvenile Chinook salmon is explained primarily by when and where they resided in estuarine habitats

Variability in the performance of juvenile Chinook salmon is explained primarily by when and... Estuarine habitats provide rearing opportunities for the juvenile life stage of anadromous fishes. Because survival is positively correlated with juvenile performance, these estuarine habitats play an important role in population abundance and productivity. To provide information for the recovery of several depressed stocks of Chinook salmon in the Columbia River Basin, we sought to identify the factors that explain variability in performance. Using otolith‐derived estimates of juvenile somatic growth rate as an index of recent performance, we observed a negative nonlinear relationship between growth rate and day of year, and a decreasing and increasing trend of growth rate over the 8 years of this study and distance from the river mouth respectively. Using a generalised linear modelling approach, we found that variability in juvenile somatic growth rate was best explained by where and when individuals were collected, their body size, contaminant loads, stock of origin, and whether a fish was hatchery produced or unmarked. Lastly, we argue that a considerable improvement to the growth rate of juveniles in estuarine habitats is physiologically possible. The results of this 8‐year study provide a baseline of the performance of juvenile Chinook salmon to evaluate habitat restoration programs and to compare against future anthropogenic conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecology of Freshwater Fish Wiley

Variability in the performance of juvenile Chinook salmon is explained primarily by when and where they resided in estuarine habitats

Loading next page...
 
/lp/wiley/variability-in-the-performance-of-juvenile-chinook-salmon-is-explained-b0bIamY7tH
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
ISSN
0906-6691
eISSN
1600-0633
D.O.I.
10.1111/eff.12398
Publisher site
See Article on Publisher Site

Abstract

Estuarine habitats provide rearing opportunities for the juvenile life stage of anadromous fishes. Because survival is positively correlated with juvenile performance, these estuarine habitats play an important role in population abundance and productivity. To provide information for the recovery of several depressed stocks of Chinook salmon in the Columbia River Basin, we sought to identify the factors that explain variability in performance. Using otolith‐derived estimates of juvenile somatic growth rate as an index of recent performance, we observed a negative nonlinear relationship between growth rate and day of year, and a decreasing and increasing trend of growth rate over the 8 years of this study and distance from the river mouth respectively. Using a generalised linear modelling approach, we found that variability in juvenile somatic growth rate was best explained by where and when individuals were collected, their body size, contaminant loads, stock of origin, and whether a fish was hatchery produced or unmarked. Lastly, we argue that a considerable improvement to the growth rate of juveniles in estuarine habitats is physiologically possible. The results of this 8‐year study provide a baseline of the performance of juvenile Chinook salmon to evaluate habitat restoration programs and to compare against future anthropogenic conditions.

Journal

Ecology of Freshwater FishWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off