Variability in responses observed in human white adipose tissue models

Variability in responses observed in human white adipose tissue models Obesity is a risk factor for a myriad of diseases including diabetes, cardiovascular dysfunction, cirrhosis, and cancer, and there is a need for new systems to study how excess adipose tissue relates to the onset of disease processes. This study provides proof‐of‐concept patient‐specific tissue models of human white adipose tissue to accommodate the variability in human samples. Our 3D tissue engineering approach established lipolytic responses and changes in insulin‐stimulated glucose uptake from small volumes of human lipoaspirate, making this methodology useful for patient specific sample source assessments of treatment strategies, drug responses, disease mechanisms, and other responses that vary between patients. Mature unilocular cells were maintained ex vivo in silk porous scaffolds for up to a month of culture and imaged non‐invasively with coherent anti‐Stokes Raman scattering. Interestingly, differences in responsiveness between tissues were observed in terms of magnitude of lipolysis, ability to suppress lipolysis, differences in glucose uptake, and lipid droplet size. Body mass index was not a factor in determining tissue responsiveness; rather, it is speculated that other unknown variables in the backgrounds of different patients (ethnicity, athleticism, disease history, lifestyle choices, etc.) likely had a more significant effect on the observed differences. This study reinforces the need to account for the variability in backgrounds and genetics within the human population to determine adipose tissue responsiveness. In the future, this tissue system could be used to inform individualized care strategies—enhancing therapeutic precision, improving patient outcomes, and reducing clinical costs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

Loading next page...
 
/lp/wiley/variability-in-responses-observed-in-human-white-adipose-tissue-models-DLXyuyyFlx
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2572
Publisher site
See Article on Publisher Site

Abstract

Obesity is a risk factor for a myriad of diseases including diabetes, cardiovascular dysfunction, cirrhosis, and cancer, and there is a need for new systems to study how excess adipose tissue relates to the onset of disease processes. This study provides proof‐of‐concept patient‐specific tissue models of human white adipose tissue to accommodate the variability in human samples. Our 3D tissue engineering approach established lipolytic responses and changes in insulin‐stimulated glucose uptake from small volumes of human lipoaspirate, making this methodology useful for patient specific sample source assessments of treatment strategies, drug responses, disease mechanisms, and other responses that vary between patients. Mature unilocular cells were maintained ex vivo in silk porous scaffolds for up to a month of culture and imaged non‐invasively with coherent anti‐Stokes Raman scattering. Interestingly, differences in responsiveness between tissues were observed in terms of magnitude of lipolysis, ability to suppress lipolysis, differences in glucose uptake, and lipid droplet size. Body mass index was not a factor in determining tissue responsiveness; rather, it is speculated that other unknown variables in the backgrounds of different patients (ethnicity, athleticism, disease history, lifestyle choices, etc.) likely had a more significant effect on the observed differences. This study reinforces the need to account for the variability in backgrounds and genetics within the human population to determine adipose tissue responsiveness. In the future, this tissue system could be used to inform individualized care strategies—enhancing therapeutic precision, improving patient outcomes, and reducing clinical costs.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial