Vapor‐Phase Polymerization and Carbonization to Nitrogen‐Doped Carbon Nanoscale Networks with Designable Pore Geometries Templated from Block Copolymers

Vapor‐Phase Polymerization and Carbonization to Nitrogen‐Doped Carbon Nanoscale Networks with... 3D interconnected nitrogen‐doped carbon nanoscale networks (N‐CNNs) with designable pore geometries are prepared by vapor‐phase polymerization approach and subsequent carbonization using self‐assembled block copolymer (BCP) polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) with bicontinuous structures as templates. PS‐b‐P4VP monolithic membranes composed of interconnected micellar fibers or spheres with PS@P4VP core–shell structure are obtained by swelling lamellar supramolecular membranes of PS‐b‐P4VP and 3‐n‐pentadecylphenol (PDP) via hydrogen bonding. Importantly, the morphologies of self‐assembled BCP can be tuned by just adjusting swelling time for the same PS‐b‐P4VP(PDP). The vapor‐phase polymerization strategy is adopted for the first time to complex iodine to P4VP shell layers and subsequently initiates the polymerization of pyrrole to form polypyrrole on the outside of PS@P4VP core–shell structures. After carbonization, the BCP templates are removed and N‐CNNs with different pore geometries are obtained. The interconnected network structures and the introduction of nitrogen in carbon nanoscale networks make them particularly promising in many applications such as oxygen reduction reaction (ORR). The N‐CNN templated from micellar fibers (N‐CNN‐F), as a metal‐free ORR catalyst, displays comparable performance with Pt/C in alkaline media. The study provides not only a new synthesis method, but also important insight into designing 3D networks with open‐celled pores for ORR and other applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Materials Interfaces Wiley

Vapor‐Phase Polymerization and Carbonization to Nitrogen‐Doped Carbon Nanoscale Networks with Designable Pore Geometries Templated from Block Copolymers

Loading next page...
 
/lp/wiley/vapor-phase-polymerization-and-carbonization-to-nitrogen-doped-carbon-LfyTb9nJ0o
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
2196-7350
eISSN
2196-7350
D.O.I.
10.1002/admi.201701390
Publisher site
See Article on Publisher Site

Abstract

3D interconnected nitrogen‐doped carbon nanoscale networks (N‐CNNs) with designable pore geometries are prepared by vapor‐phase polymerization approach and subsequent carbonization using self‐assembled block copolymer (BCP) polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) with bicontinuous structures as templates. PS‐b‐P4VP monolithic membranes composed of interconnected micellar fibers or spheres with PS@P4VP core–shell structure are obtained by swelling lamellar supramolecular membranes of PS‐b‐P4VP and 3‐n‐pentadecylphenol (PDP) via hydrogen bonding. Importantly, the morphologies of self‐assembled BCP can be tuned by just adjusting swelling time for the same PS‐b‐P4VP(PDP). The vapor‐phase polymerization strategy is adopted for the first time to complex iodine to P4VP shell layers and subsequently initiates the polymerization of pyrrole to form polypyrrole on the outside of PS@P4VP core–shell structures. After carbonization, the BCP templates are removed and N‐CNNs with different pore geometries are obtained. The interconnected network structures and the introduction of nitrogen in carbon nanoscale networks make them particularly promising in many applications such as oxygen reduction reaction (ORR). The N‐CNN templated from micellar fibers (N‐CNN‐F), as a metal‐free ORR catalyst, displays comparable performance with Pt/C in alkaline media. The study provides not only a new synthesis method, but also important insight into designing 3D networks with open‐celled pores for ORR and other applications.

Journal

Advanced Materials InterfacesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial