Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z‐Scheme Overall Water Splitting

Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z‐Scheme... Inspired by natural photosynthesis, Z‐scheme photocatalytic systems are very appealing for achieving efficient overall water splitting. Developing metal‐free Z‐scheme photocatalysts for overall water splitting, however, still remains challenging. The construction of polymer‐based van der Waals heterostructures as metal‐free Z‐scheme photocatalytic systems for overall water splitting is described using aza‐fused microporous polymers (CMP) and C2N ultrathin nanosheets as O2‐ and H2‐evolving catalysts, respectively. Although neither polymer is able to split pure water using visible light, a 2:1 stoichiometric ratio of H2 and O2 was observed when aza‐CMP/C2N heterostructures were used. A solar‐to‐hydrogen conversion efficiency of 0.23 % was determined, which could be further enhanced to 0.40 % by using graphene as the solid electron mediator to promote the interfacial charge‐transfer process. This study highlights the potential of polymer photocatalysts for overall water splitting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Angewandte Chemie Wiley

Van der Waals Heterostructures Comprised of Ultrathin Polymer Nanosheets for Efficient Z‐Scheme Overall Water Splitting

Loading next page...
 
/lp/wiley/van-der-waals-heterostructures-comprised-of-ultrathin-polymer-VUmC3LTpqA
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
0044-8249
eISSN
1521-3757
D.O.I.
10.1002/ange.201710557
Publisher site
See Article on Publisher Site

Abstract

Inspired by natural photosynthesis, Z‐scheme photocatalytic systems are very appealing for achieving efficient overall water splitting. Developing metal‐free Z‐scheme photocatalysts for overall water splitting, however, still remains challenging. The construction of polymer‐based van der Waals heterostructures as metal‐free Z‐scheme photocatalytic systems for overall water splitting is described using aza‐fused microporous polymers (CMP) and C2N ultrathin nanosheets as O2‐ and H2‐evolving catalysts, respectively. Although neither polymer is able to split pure water using visible light, a 2:1 stoichiometric ratio of H2 and O2 was observed when aza‐CMP/C2N heterostructures were used. A solar‐to‐hydrogen conversion efficiency of 0.23 % was determined, which could be further enhanced to 0.40 % by using graphene as the solid electron mediator to promote the interfacial charge‐transfer process. This study highlights the potential of polymer photocatalysts for overall water splitting.

Journal

Angewandte ChemieWiley

Published: Jan 19, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off