Validation Tests of Predictive Models of Butterfly Occurrence Based on Environmental Variables

Validation Tests of Predictive Models of Butterfly Occurrence Based on Environmental Variables Abstract: Ecologists often seek to predict species distributions as functions of abiotic environmental variables. Statistical models are useful for making predictions about the occurrence of species based on variables derived from remote sensing or geographic information systems. We previously used 14 topographically based environmental variables from 49 locations in the Toquima Range ( Nevada, U.S.A. ) and species inventories conducted over 4 years ( 1996–1999 ) to model logistically the occurrence of resident butterfly species. To test the models, we collected new validation data in 39 locations in the nearby Shoshone Mountains in 2000–2001. We used a series of “classification rules” based on conventional logistic and Bayesian criteria to assess the success rates of predictions. The classification rules represented a gradient of stringency in the “certainty” with which predictions were made. More stringent rules reduced the number of predictions made but greatly increased the success rate of predictions. For comparisons of classification rules making similar numbers of predictions, conventional logistic and Bayesian criteria produced similar outcomes. Success rates for predicted absences were uniformly higher than for predicted presences. Increasing the temporal extent of data from 1 to 2 years elevated success rates for predicted presences but decreased success rates for predicted absences, leaving the overall success rates essentially the same. Although species occurrence rates ( the proportion of locations in which each species was found ) were correlated between the modeling and validation data sets, occurrence rates for many species increased or decreased substantially; erroneous predictions were more likely for those taxa. Model fit ( measured by the explained deviance ) was an indicator of the probable success rate of predicted presences but not of predicted absences or overall success rates. We suggest that classification rules for predicting likely presences and absences may be decoupled to improve overall predictive success. Our general framework for modeling species occurrence is applicable to virtually any taxonomic group or ecosystem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Validation Tests of Predictive Models of Butterfly Occurrence Based on Environmental Variables

Loading next page...
 
/lp/wiley/validation-tests-of-predictive-models-of-butterfly-occurrence-based-on-NcrtOd6wT0
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
D.O.I.
10.1046/j.1523-1739.2003.02113.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Ecologists often seek to predict species distributions as functions of abiotic environmental variables. Statistical models are useful for making predictions about the occurrence of species based on variables derived from remote sensing or geographic information systems. We previously used 14 topographically based environmental variables from 49 locations in the Toquima Range ( Nevada, U.S.A. ) and species inventories conducted over 4 years ( 1996–1999 ) to model logistically the occurrence of resident butterfly species. To test the models, we collected new validation data in 39 locations in the nearby Shoshone Mountains in 2000–2001. We used a series of “classification rules” based on conventional logistic and Bayesian criteria to assess the success rates of predictions. The classification rules represented a gradient of stringency in the “certainty” with which predictions were made. More stringent rules reduced the number of predictions made but greatly increased the success rate of predictions. For comparisons of classification rules making similar numbers of predictions, conventional logistic and Bayesian criteria produced similar outcomes. Success rates for predicted absences were uniformly higher than for predicted presences. Increasing the temporal extent of data from 1 to 2 years elevated success rates for predicted presences but decreased success rates for predicted absences, leaving the overall success rates essentially the same. Although species occurrence rates ( the proportion of locations in which each species was found ) were correlated between the modeling and validation data sets, occurrence rates for many species increased or decreased substantially; erroneous predictions were more likely for those taxa. Model fit ( measured by the explained deviance ) was an indicator of the probable success rate of predicted presences but not of predicted absences or overall success rates. We suggest that classification rules for predicting likely presences and absences may be decoupled to improve overall predictive success. Our general framework for modeling species occurrence is applicable to virtually any taxonomic group or ecosystem.

Journal

Conservation BiologyWiley

Published: Jun 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off