Utilising hydraulic transient excitation for fatigue crack monitoring of a cast iron pipeline using optical distributed sensing

Utilising hydraulic transient excitation for fatigue crack monitoring of a cast iron pipeline... Corrosion‐induced failures are common in cast iron pipes used in water supply networks. Over times, cracks may initiate from the corroded pits and grow when subjected to fatigue internal loading. When the particular region of the pipe loses its structural capacity, it will eventually lead to leakage or even pipe burst. Thus, it is important to perform permanent and real‐time integrity monitoring on these pipelines. Distributed optical fibre sensors (DOFS) have been proposed to monitor the structural health of water pipelines for the last few decades. Most of the previous studies have shown that DOFS is effective in monitoring the condition of a pipeline subjected to static operating pressure. This paper aims to experimentally demonstrate the ability of distributed optical fibre strain sensor to monitor the fatigue crack growth along the cast iron pipeline subjected to pressure transient. The fatigue test was conducted using a large‐scale cyclic internal pressure loading facility. The DOFS was instrumented on the pipe to monitor the condition of the pipe when subjected to internal pressure loading approximation of water pressure loading (operating pressure and pressure transient) experienced in the field. The measured response will show the potential application of DOFS for crack detection, as well as monitoring the fatigue crack growth along the pipe. The results confirmed that DOFS is able to enhance the detection of cracks along the pipe subjected to pressure transient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural Control and Health Monitoring Wiley

Utilising hydraulic transient excitation for fatigue crack monitoring of a cast iron pipeline using optical distributed sensing

Loading next page...
 
/lp/wiley/utilising-hydraulic-transient-excitation-for-fatigue-crack-monitoring-4fe11TmjPX
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1545-2255
eISSN
1545-2263
D.O.I.
10.1002/stc.2141
Publisher site
See Article on Publisher Site

Abstract

Corrosion‐induced failures are common in cast iron pipes used in water supply networks. Over times, cracks may initiate from the corroded pits and grow when subjected to fatigue internal loading. When the particular region of the pipe loses its structural capacity, it will eventually lead to leakage or even pipe burst. Thus, it is important to perform permanent and real‐time integrity monitoring on these pipelines. Distributed optical fibre sensors (DOFS) have been proposed to monitor the structural health of water pipelines for the last few decades. Most of the previous studies have shown that DOFS is effective in monitoring the condition of a pipeline subjected to static operating pressure. This paper aims to experimentally demonstrate the ability of distributed optical fibre strain sensor to monitor the fatigue crack growth along the cast iron pipeline subjected to pressure transient. The fatigue test was conducted using a large‐scale cyclic internal pressure loading facility. The DOFS was instrumented on the pipe to monitor the condition of the pipe when subjected to internal pressure loading approximation of water pressure loading (operating pressure and pressure transient) experienced in the field. The measured response will show the potential application of DOFS for crack detection, as well as monitoring the fatigue crack growth along the pipe. The results confirmed that DOFS is able to enhance the detection of cracks along the pipe subjected to pressure transient.

Journal

Structural Control and Health MonitoringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial