Using ecological restoration to constrain biological invasion

Using ecological restoration to constrain biological invasion Summary 1 Biological invasion can permanently alter ecosystem structure and function. Invasive species are difficult to eradicate, so methods for constraining invasions would be ecologically valuable. We examined the potential of ecological restoration to constrain invasion of an old field by Agropyron cristatum, an introduced C3 grass. 2 A field experiment was conducted in the northern Great Plains of North America. One‐hundred and forty restored plots were planted in 1994–96 with a mixture of C3 and C4 native grass seed, while 100 unrestored plots were not. Vegetation on the plots was measured periodically between 1994 and 2002. 3 Agropyron cristatum invaded the old field between 1994 and 2002, occurring in 5% of plots in 1994 and 66% of plots in 2002, and increasing in mean cover from 0·2% in 1994 to 17·1% in 2002. However, A. cristatum invaded one‐third fewer restored than unrestored plots between 1997 and 2002, suggesting that restoration constrained invasion. Further, A. cristatum cover in restored plots decreased with increasing planted grass cover. Stepwise regression indicated that A. cristatum cover was more strongly correlated with planted grass cover than with distance from the A. cristatum source, species richness, percentage bare ground or percentage litter. 4 The strength of the negative relationship between A. cristatum and planted native grasses varied among functional groups: the correlation was stronger with species with phenology and physiology similar to A. cristatum (i.e. C3 grasses) than with dissimilar species (C4 grasses). 5 Richness and cover of naturally establishing native species decreased with increasing A. cristatum cover. In contrast, restoration had little effect on the establishment and colonization of naturally establishing native species. Thus, A. cristatum hindered colonization by native species while planted native grasses did not. 6 Synthesis and applications. To our knowledge, this study provides the first indication that restoration can act as a filter, constraining invasive species while allowing colonization by native species. These results suggest that resistance to invasion depends on the identity of species in the community and that restoration seed mixes might be tailored to constrain selected invaders. Restoring areas before invasive species become established can reduce the magnitude of biological invasion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Using ecological restoration to constrain biological invasion

Loading next page...
 
/lp/wiley/using-ecological-restoration-to-constrain-biological-invasion-uuIDRPJTAp
Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
DOI
10.1111/j.0021-8901.2004.00962.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1 Biological invasion can permanently alter ecosystem structure and function. Invasive species are difficult to eradicate, so methods for constraining invasions would be ecologically valuable. We examined the potential of ecological restoration to constrain invasion of an old field by Agropyron cristatum, an introduced C3 grass. 2 A field experiment was conducted in the northern Great Plains of North America. One‐hundred and forty restored plots were planted in 1994–96 with a mixture of C3 and C4 native grass seed, while 100 unrestored plots were not. Vegetation on the plots was measured periodically between 1994 and 2002. 3 Agropyron cristatum invaded the old field between 1994 and 2002, occurring in 5% of plots in 1994 and 66% of plots in 2002, and increasing in mean cover from 0·2% in 1994 to 17·1% in 2002. However, A. cristatum invaded one‐third fewer restored than unrestored plots between 1997 and 2002, suggesting that restoration constrained invasion. Further, A. cristatum cover in restored plots decreased with increasing planted grass cover. Stepwise regression indicated that A. cristatum cover was more strongly correlated with planted grass cover than with distance from the A. cristatum source, species richness, percentage bare ground or percentage litter. 4 The strength of the negative relationship between A. cristatum and planted native grasses varied among functional groups: the correlation was stronger with species with phenology and physiology similar to A. cristatum (i.e. C3 grasses) than with dissimilar species (C4 grasses). 5 Richness and cover of naturally establishing native species decreased with increasing A. cristatum cover. In contrast, restoration had little effect on the establishment and colonization of naturally establishing native species. Thus, A. cristatum hindered colonization by native species while planted native grasses did not. 6 Synthesis and applications. To our knowledge, this study provides the first indication that restoration can act as a filter, constraining invasive species while allowing colonization by native species. These results suggest that resistance to invasion depends on the identity of species in the community and that restoration seed mixes might be tailored to constrain selected invaders. Restoring areas before invasive species become established can reduce the magnitude of biological invasion.

Journal

Journal of Applied EcologyWiley

Published: Dec 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off