Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces

Use of thermography for quantitative studies of spatial and temporal variation of stomatal... ABSTRACT This paper describes a new approach to the calibration of thermal infrared measurements of leaf temperature for the estimation of stomatal conductance and illustrates its application to thermal imaging of plant leaves. The approach is based on a simple reformulation of the leaf energy balance equation that makes use of temperature measurements on reference surfaces of known conductance to water vapour. The use of reference surfaces is an alternative to the accurate measurement of all components of the leaf energy balance and is of potentially wide application in studies of stomatal behaviour. The resolution of the technique when applied to thermal images is evaluated and some results of using the approach in the laboratory for the study of stomatal behaviour in leaves of Phaseolus vulgaris L. are presented. Conductances calculated from infrared measurements were well correlated with estimates obtained using a diffusion porometer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Cell & Environment Wiley

Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces

Loading next page...
 
/lp/wiley/use-of-thermography-for-quantitative-studies-of-spatial-and-temporal-OLM2Rx8DZm
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 1999 Blackwell Science Ltd
ISSN
0140-7791
eISSN
1365-3040
D.O.I.
10.1046/j.1365-3040.1999.00468.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT This paper describes a new approach to the calibration of thermal infrared measurements of leaf temperature for the estimation of stomatal conductance and illustrates its application to thermal imaging of plant leaves. The approach is based on a simple reformulation of the leaf energy balance equation that makes use of temperature measurements on reference surfaces of known conductance to water vapour. The use of reference surfaces is an alternative to the accurate measurement of all components of the leaf energy balance and is of potentially wide application in studies of stomatal behaviour. The resolution of the technique when applied to thermal images is evaluated and some results of using the approach in the laboratory for the study of stomatal behaviour in leaves of Phaseolus vulgaris L. are presented. Conductances calculated from infrared measurements were well correlated with estimates obtained using a diffusion porometer.

Journal

Plant Cell & EnvironmentWiley

Published: Sep 9, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off