Use of coupled oscillator models to understand synchrony and travelling waves in populations of the field vole Microtus agrestis in northern England

Use of coupled oscillator models to understand synchrony and travelling waves in populations of... 1. Earlier studies have reported that field vole Microtus agrestis populations in Kielder Forest, UK, exhibit typical 3–4‐year cyclical dynamics, and that the observed spatiotemporal patterns are consistent with a travelling wave in vole abundance moving along an axis south‐west–north‐east at approximately 19 km year–1. One property of this wave is that nearby populations fluctuate more synchronously than distant ones, with correlations falling lower than the average for the sampling area beyond approximately 13 km. 2. In this paper we present a series of models that investigate the possibility that both the observed degree of synchrony and the travelling wave can be explained as a simple consequence of linking a series of otherwise independently oscillating populations. Our ‘coupled oscillator’ models consider a series of populations, distributed either in a linear array or in a two‐dimensional regular matrix. Local population fluctuations, each with a 3–4‐year period, were generated using either a Ricker equation or a set of discrete‐time Lotka–Volterra equations. Movement among populations was simulated either by a fixed proportion of each population moving locally to their nearest neighbour populations, or the same proportion being distributed via a continuous geometric function (more distant populations receiving less). 3. For a variety of different ways of generating cycles and a number of different movement rules, local exchange between oscillating populations tended to generate synchrony domains that extended over a large number of populations. When the rates of exchange between local populations were relatively low, then permanent travelling waves emerged, especially after an initial invasion phase. There was a non‐linear relationship between the amount of dispersal and the domain of synchrony that this movement generated. Furthermore, the observed spatiotemporal patterns that emerged following an initial invasion phase were found to be highly dependent on the extreme distances reached by rare dispersers. 4. As populations of voles are predominantly distributed in grassland patches created by clear‐cutting of forest stands, we estimated the mean patch diameter and mean interpatch distance using a geographical information system (GIS) of the forest. Our simplified models suggest that if as much as 5–10% of each vole population dispersed a mean of 178 m between clear‐cuts per generation, then this would generate a synchrony domain and speed of wave in the region of 6–24 km (per year), which is reasonably consistent with the observed synchrony domain and speed. Much less dispersal would be capable of generating this scale of domain if some individuals occasionally moved beyond the nearest‐neighbour patch. 5. While we still do not know what causes the local oscillations, our models question the need to invoke additional factors to explain large‐scale synchrony and travelling waves beyond small‐scale dispersal and local density‐dependent feedback. Our work also suggests that the higher degrees of synchrony observed in Fennoscandian habitats compared with Kielder may be due in part to the relative ease of movement of voles in these former habitats. As our work confirms that the rates of exchange among local populations will have a strong influence on synchrony, then we anticipate that the spatiotemporal distribution of clear‐cuts will also have an important influence on the dynamics of predators of voles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Use of coupled oscillator models to understand synchrony and travelling waves in populations of the field vole Microtus agrestis in northern England

Loading next page...
 
/lp/wiley/use-of-coupled-oscillator-models-to-understand-synchrony-and-sj0cSMPsYs
Publisher
Wiley
Copyright
Copyright © 2000 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
DOI
10.1046/j.1365-2664.2000.00472.x
Publisher site
See Article on Publisher Site

Abstract

1. Earlier studies have reported that field vole Microtus agrestis populations in Kielder Forest, UK, exhibit typical 3–4‐year cyclical dynamics, and that the observed spatiotemporal patterns are consistent with a travelling wave in vole abundance moving along an axis south‐west–north‐east at approximately 19 km year–1. One property of this wave is that nearby populations fluctuate more synchronously than distant ones, with correlations falling lower than the average for the sampling area beyond approximately 13 km. 2. In this paper we present a series of models that investigate the possibility that both the observed degree of synchrony and the travelling wave can be explained as a simple consequence of linking a series of otherwise independently oscillating populations. Our ‘coupled oscillator’ models consider a series of populations, distributed either in a linear array or in a two‐dimensional regular matrix. Local population fluctuations, each with a 3–4‐year period, were generated using either a Ricker equation or a set of discrete‐time Lotka–Volterra equations. Movement among populations was simulated either by a fixed proportion of each population moving locally to their nearest neighbour populations, or the same proportion being distributed via a continuous geometric function (more distant populations receiving less). 3. For a variety of different ways of generating cycles and a number of different movement rules, local exchange between oscillating populations tended to generate synchrony domains that extended over a large number of populations. When the rates of exchange between local populations were relatively low, then permanent travelling waves emerged, especially after an initial invasion phase. There was a non‐linear relationship between the amount of dispersal and the domain of synchrony that this movement generated. Furthermore, the observed spatiotemporal patterns that emerged following an initial invasion phase were found to be highly dependent on the extreme distances reached by rare dispersers. 4. As populations of voles are predominantly distributed in grassland patches created by clear‐cutting of forest stands, we estimated the mean patch diameter and mean interpatch distance using a geographical information system (GIS) of the forest. Our simplified models suggest that if as much as 5–10% of each vole population dispersed a mean of 178 m between clear‐cuts per generation, then this would generate a synchrony domain and speed of wave in the region of 6–24 km (per year), which is reasonably consistent with the observed synchrony domain and speed. Much less dispersal would be capable of generating this scale of domain if some individuals occasionally moved beyond the nearest‐neighbour patch. 5. While we still do not know what causes the local oscillations, our models question the need to invoke additional factors to explain large‐scale synchrony and travelling waves beyond small‐scale dispersal and local density‐dependent feedback. Our work also suggests that the higher degrees of synchrony observed in Fennoscandian habitats compared with Kielder may be due in part to the relative ease of movement of voles in these former habitats. As our work confirms that the rates of exchange among local populations will have a strong influence on synchrony, then we anticipate that the spatiotemporal distribution of clear‐cuts will also have an important influence on the dynamics of predators of voles.

Journal

Journal of Applied EcologyWiley

Published: Sep 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off